
MATLAB® Production Server™
Server Management Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Management Guide
© COPYRIGHT 2012–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2014 Online only New for Version 1.2 (Release 2014a)
October 2014 Online only Revised for Version 2.0 (Release 2014b)
March 2015 Online only Revised for Version 2.1 (Release 2015a)
September 2015 Online only Revised for Version 2.2 (Release 2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)

Server Management
1

Server Overview . 1-2
What Is a Server? . 1-2
How Does a Server Manage Work? . 1-2

Create a Server . 1-5
Prerequisites . 1-5
Procedure . 1-5

Edit the Configuration File . 1-7
About the Server Configuration File . 1-7
Common Customizations . 1-7

Specify the Default MATLAB Runtime for New Server Instances
. 1-9

Run mps-setup in Non-Interactive Mode for Silent Install 1-9

Specify the MATLAB Runtime for a Server Instance 1-11

Start a Server Instance . 1-12
Prerequisites . 1-12
Procedure . 1-12

Share the Deployable Archive . 1-14

Support Multiple MATLAB Versions . 1-15
How the Server Instance Selects the MATLAB Runtime to Use

. 1-15
Changes to Worker Management . 1-16

Control Worker Restarts . 1-17
Restart Workers Based on Up Time . 1-17
Restart Workers Based on Amount of Memory in Use 1-17

v

Contents

Install a Server Instance as a Windows Service 1-19
Create a New Server Instance as a Windows Service 1-19
Make an Existing Server Instance a Windows Service 1-19

Recovery Options for a Server Instance Running as a Windows
Service . 1-21

Manage Licenses for MATLAB Production Server
2

Specify or Verify License Server Options in Server
Configuration File . 2-2

Verify Status of License Server using mps-status 2-3

Force a License Checkout Using mps-license-reset 2-4

Secure a Server
3

Security Overview . 3-2

Enable HTTPS . 3-3

Configure Client Authentication . 3-5

Specify Access to MATLAB Programs . 3-7

Adjust Security Protocols . 3-9

Improve Startup Time When Security Is Activated 3-10

Access Control . 3-11
Access Control Configuration File . 3-11
Access Control Policy File . 3-12

vi Contents

Use Kerberos and Kerberos Delegation 3-18
Supported Environment . 3-18

Troubleshooting
4

Verify Server Status . 4-2
Procedure . 4-2
License Server Status Information . 4-3

Diagnose a Server Instance . 4-5

Diagnose a Corrupted MATLAB Runtime 4-6

Server Diagnostic Tools . 4-7
Log Files . 4-7
Process Identification Files (PID Files) 4-7
Endpoint Files . 4-7

Manage Log Files . 4-9
Best Practices for Log Management . 4-9
Log Retention and Archive Settings . 4-9
Setting Log File Detail Levels . 4-10

Common Error Messages and Resolutions 4-11
(404) Not Found . 4-11
Error: Bad MATLAB Runtime Instance 4-11
Error: Server Instance not Specified 4-11
Error: invalid target host or port . 4-12
Error: HTTP error: HTTP/x.x 404 Component not found 4-12

Impact of Server Configurations on Processing
Asynchronous Requests

5
Impact of Server Configurations on Processing Asynchronous

Requests . 5-2

vii

Set Up MATLAB Production Server Dashboard
6

Set Up and Log In to MATLAB Production Server Dashboard
. 6-2

Set Up the Dashboard . 6-2
Log In to the Dashboard . 6-5
Reset the Admin Password . 6-5

Remove MATLAB Production Server Dashboard 6-7

Commands — Alphabetical List
7

Configuration Properties— Alphabetical List
8

viii Contents

Server Management

• “Server Overview” on page 1-2
• “Create a Server” on page 1-5
• “Edit the Configuration File” on page 1-7
• “Specify the Default MATLAB Runtime for New Server Instances” on page 1-9
• “Specify the MATLAB Runtime for a Server Instance” on page 1-11
• “Start a Server Instance” on page 1-12
• “Share the Deployable Archive” on page 1-14
• “Support Multiple MATLAB Versions” on page 1-15
• “Control Worker Restarts” on page 1-17
• “Install a Server Instance as a Windows Service” on page 1-19
• “Recovery Options for a Server Instance Running as a Windows Service”

on page 1-21

1

Server Overview
In this section...
“What Is a Server?” on page 1-2
“How Does a Server Manage Work?” on page 1-2

What Is a Server?
You can create any number of server instances using MATLAB Production Server
software. Each server instance can host any number of deployable archives containing
MATLAB code. You may find it helpful to create one server for all archives relating to a
particular application. You can also create one server to host code strictly for testing, and
so on.

A server instance is considered to be one unique configuration of the MATLAB Production
Server product. Each configuration has its own options file (main_config) and
diagnostic files (log files, Process Identification (pid) files, and endpoint files).

In addition, each server has its own auto_deploy folder, which contains the deployable
archives you want the server to host for clients.

The server also manages the MATLAB Runtime (MATLAB Compiler), which enables
MATLAB code to execute. The settings in main_config determine how each server
interacts with the MATLAB Runtime to process clients requests. You can set these
parameters according to your performance requirements and other variables in your IT
environment.

How Does a Server Manage Work?
A server processes a transaction using these steps:

1 The client sends MATLAB function calls to the master server process (the main
process on the server).

2 MATLAB function calls are passed to one or more MATLAB Runtime workers.
3 MATLAB functions are executed by the MATLAB Runtime worker.
4 Results of MATLAB function execution are passed back to the master server process.
5 Results of MATLAB function execution are passed back for processing by the client.

1 Server Management

1-2

The server is the middleman in the MATLAB Production Server environment. It
simultaneously accepts connections from clients, and then dispatches MATLAB Runtime
workers—MATLAB sessions—to process client requests to the MATLAB Runtime. By
defining and adjusting the number of workers and threads available to a server, you tune
capacity and throughput respectively.

• Workers (capacity management) (num-workers) — The number of MATLAB Runtime
workers available to a server.

Each worker dispatches one MATLAB execution request to the MATLAB Runtime,
interacting with one client at a time. By defining and tuning the number of workers
available to a server, you set the number of concurrent MATLAB execution requests
that can be processed simultaneously. num-workers should roughly correspond to the
number of cores available on the local host.

• Threads (throughput management) (num-threads) — The number of threads (units of
processing) available to the master server process.

MATLAB Production Server Data Flow from Client to Server and Back

 Server Overview

1-3

The server does not allocate a unique thread to each client connection. Rather, when
data is available on a connection, the required processing is scheduled on a pool of
threads. --num-threads sets the size of that pool (the number of available request-
processing threads) in the master server process. The threads in the pool do not
execute MATLAB code directly. Instead, there is a single thread within each MATLAB
Runtime worker process that executes MATLAB code on the client's behalf.

See Also
mcr-root | mps-setup

More About
• “Create a Server” on page 1-5
• “Support Multiple MATLAB Versions” on page 1-15

1 Server Management

1-4

Create a Server
In this section...
“Prerequisites” on page 1-5
“Procedure” on page 1-5

Prerequisites
Before creating a server, ensure you have:

• Installed MATLAB Production Server software.
• Added the script folder to your system PATH environment variable. Doing so enables

you to run server commands such as mps-new from any folder on your system.

Note You can run server commands from the script folder. The script folder is
located at $MPS_INSTALL\script, where $MPS_INSTALL is the location where
MATLAB Production Server is installed. For example, on Windows, the default location
is: C:\Program Files\MATLAB\MATLAB Production Server\ver\script. ver
is the version of MATLAB Production Server.

Procedure
Before you can deploy your MATLAB code with MATLAB Production Server, you need to
create a server to host your deployable archive.

A server instance is considered to be one unique configuration of the MATLAB Production
Server product. Each configuration has its own parameter settings file (main_config) as
well as its own set of diagnostic files.

To create a server configuration or instance:

1 From the system command prompt, navigate to where you want to create your server
instance.

2 Enter the mps-new command from the system prompt:

mps-new [path/]server_name [-v]

where:

 Create a Server

1-5

• path is the path to the server instance and configuration you want to create for
use with the MATLAB Production Server product. When specifying a path, ensure
the path ends with the server_name.

If you are creating a server instance in the current folder, you do not need to
specify a full path. Only specify the server name.

• server_name — is the name of the server instance and configuration you want to
create.

• -v — enables verbose output, giving you information and status about each folder
created in the server configuration.

See Also
mps-service

More About
• “Install a Server Instance as a Windows Service” on page 1-19

1 Server Management

1-6

Edit the Configuration File

In this section...
“About the Server Configuration File” on page 1-7
“Common Customizations” on page 1-7

About the Server Configuration File
To change any MATLAB Production Server properties, edit the main_config
configuration file that corresponds to your specific server instance:

server_name/config/main_config

When editing main_config, remember these coding considerations:

• Each server has its own main_config configuration file.
• You enter only one configuration property and related options per line. Each
configuration property entry starts with two dashes (--).

• Any line beginning with a pound sign (#) is ignored as a comment.
• Lines of white space are ignored.

Common Customizations
• “Setting Default Port Number for Client Requests” on page 1-7
• “Setting Number of Available Workers” on page 1-7
• “Setting Number of Available Threads” on page 1-8

Setting Default Port Number for Client Requests

Use the http property to set the default port number on which the server listens for
client requests.

Setting Number of Available Workers

Use the num-workers property to set the number of concurrent MATLAB execution
requests that can be processed simultaneously.

 Edit the Configuration File

1-7

Setting Number of Available Threads

Use the num-threads property to set the number of request-processing threads available
to the master server process.

Note For .NET Clients, the HTTP 1.1 protocol restricts the maximum number of
concurrent connections between a client and a server to two.

This restriction only applies when the client and server are connected remotely. A local
client/server connection has no such restriction.

To specify a higher number of connections than two for remote connection, use the NET
classes System.Net.ServicePoint and System.Net.ServicePointManager to
modify maximum concurrent connections.

For example, to specify four concurrent connections, code the following:
ServicePointManager.DefaultConnectionLimit = 4;
MWClient client = new MWHttpClient(new MyConfig());
MPSClient mpsExample = client.CreateProxy(
 new Uri("http://user01:9910/mpsexample"));

See Also
https

More About
• “Create a Server” on page 1-5
• “Control Worker Restarts” on page 1-17

1 Server Management

1-8

Specify the Default MATLAB Runtime for New Server
Instances

Each server that you create with MATLAB Production Server has its own configuration
file that defines various server management criteria.

The mps-setup command line wizard searches for MATLAB Runtime instances and sets
the default path to the MATLAB Runtime for all server instances you create.

To run the command line wizard, do the following after first downloading and performing
the “Download and Install the MATLAB Runtime”.

1 Ensure you are logged on with administrator privileges.
2 At the system command prompt, run mps-setup from the script folder.

Alternatively, add the script folder to your system PATH environment variable to
run mps-setup from any folder on your system. The script folder is located at
$MPS_INSTALL\script, where $MPS_INSTALL is the location in which MATLAB
Production Server is installed. For example, on Windows®, the default location is
C:\Program Files\MATLAB\MATLAB Production Server\ver\script\mps-
setup.

ver is the version of MATLAB Production Server to use.
3 Follow the instructions in the command line wizard.

The wizard will search your system and display installed MATLAB Runtime instances.
4 Enter y to confirm or n to specify a default MATLAB Runtime for all server

configurations created with MATLAB Production Server.

If mps-setup cannot locate an installed MATLAB Runtime on your system, you will
be prompted to enter a path name to a valid instance.

Run mps-setup in Non-Interactive Mode for Silent Install
You can also run mps-setup without interactive command input for silent installations.

To run mps-setup, specify the path name of the MATLAB Runtime as a command line
argument. For example, on Windows:

mps-setup "C:\Program Files\MATLAB\MATLAB Runtime\mcrver"

 Specify the Default MATLAB Runtime for New Server Instances

1-9

mcrver is the version of the MATLAB Runtime to use.

See Also
mps-start

More About
• “Specify the MATLAB Runtime for a Server Instance” on page 1-11
• “Support Multiple MATLAB Versions” on page 1-15

1 Server Management

1-10

Specify the MATLAB Runtime for a Server Instance
To specify the installed location of the MATLAB Runtime for your server instance:

1 If the server instance is running, stop it.
2 Open the configuration file for the instance in a text editor.

The configuration file is located at instanceRoot/config/main_config.
3 Locate the entry for the mcr-root property.

--mcr-root mCRuNsETtOKEN
4 Modify the mcr_root property to point to the installed MATLAB Runtime you want to

work with.

For example:

--mcr-root C:\Program Files\MATLAB\MATLAB Runtime\vnnn

Note You must specify the version number of the MATLAB Runtime (vnnn). MATLAB
Runtime versions you specify must be compatible with MATLAB Production Server.

5 Restart the server instance.

See Also
mps-start

More About
• “Specify the Default MATLAB Runtime for New Server Instances” on page 1-9
• “Edit the Configuration File” on page 1-7
• “Support Multiple MATLAB Versions” on page 1-15

 Specify the MATLAB Runtime for a Server Instance

1-11

Start a Server Instance
In this section...
“Prerequisites” on page 1-12
“Procedure” on page 1-12

Prerequisites
Before attempting to start a server, verify that you have:

• Installed the MATLAB Runtime
• Created a server instance on page 1-5
• Specified the default MATLAB Runtime for the instance on page 1-9

Procedure
To start a server instance, complete the following steps:

1 Open a system command prompt.
2 Enter the mps-start command:

mps-start [-C path/]server_name [-f]

where:

• -C path/ — Path to the server instance you want to create. path should end
with the server name.

• server_name — Name of the server instance you want to start or stop.
• -f — Forces command to succeed, regardless or whether the server is already

started or stopped.

Note If needed, use the mps-status command to verify the server is running.

See Also
mps-new | mps-service

1 Server Management

1-12

More About
• “Install a Server Instance as a Windows Service” on page 1-19
• “Share the Deployable Archive” on page 1-14

 See Also

1-13

Share the Deployable Archive
After you create the deployable archive, share it with clients of MATLAB Production
Server by copying it to your server, for hosting. For information on how to create a
deployable archive, see “Package Deployable Archives with Production Server Compiler
App” and “Package Deployable Archives from Command Line”.

In order to share the deployable archive, a server must be created and started.

1 Locate your deployable archive in the for_redistribution_files_only folder of
your compiler project folder.

It is named project_name.ctf.
2 Copy project_name.ctf to the \server_name\auto_deploy folder in your

server instance.

For example, if your server is named prod_server_1 and located in C:\tmp, copy
project_name.ctf to C:\tmp\prod_server_1\auto_deploy.

See Also

More About
• “Create a Server” on page 1-5
• “Enable HTTPS” on page 3-3

1 Server Management

1-14

Support Multiple MATLAB Versions
In this section...
“How the Server Instance Selects the MATLAB Runtime to Use” on page 1-15
“Changes to Worker Management” on page 1-16

MATLAB Production Server instances can host deployable archives compiled using
multiple versions of MATLAB Compiler SDK™. You configure a server instance to do this
by adding multiple mcr-root properties to the configuration file for the instance:

1 Install the required versions of the MATLAB Runtime.

Note

• A server instance should only be configured to use MATLAB Runtime roots on a
local file system. Otherwise, a network partition may cause worker processes to
fail.

• All values for mcr-root must be for the same OS/hardware combination.

2 If the server instance is running, stop it.
3 Open the configuration file for the instance in a text editor.

The configuration file is at instanceRoot/config/main_config.
4 Locate the entry for the mcr-root property.

--mcr-root mCRuNsETtOKEN
5 For each version of the MATLAB Runtime the instance supports, add an instance of

the mcr_root property.

For example, to configure the instance to use the v81 and v82 versions of the
MATLAB Runtime.

--mcr-root C:\Program Files\MATLAB\MATLAB Compiler Runtime\v81
--mcr-root C:\Program Files\MATLAB\MATLAB Runtime\v82

6 Restart the server instance.

How the Server Instance Selects the MATLAB Runtime to Use
Once the server instance is configured to use multiple versions of MATLAB Runtime, it
scans the list of provided MATLAB Runtime installations in order from first to last and

 Support Multiple MATLAB Versions

1-15

chooses the first MATLAB Runtime installation capable of processing the request. A
MATLAB Runtime installation can process a request if it is compatible with the version of
MATLAB used to create the deployable archive containing the function being evaluated.

Note Since the server instance always chooses the first compatible version of MATLAB
Runtime, configuring the server instance with multiple instances of the same MATLAB
Runtime version has no effect on performance.

Changes to Worker Management
Configuring a server instance to use multiple MATLAB Runtime versions also changes to
how the server instance manages the workers used to process requests.

When using a single MATLAB Runtime installation, the server instance starts workers as
needed until num-workers workers are running. Once running, workers maybe restarted
in response to the worker-restart-interval property or the worker-restart-
memory-limit property. Workers are never fully stopped.

Once a server instance starts using multiple MATLAB Runtime versions, it dynamically
manages the worker pool. The server instance starts new workers as needed until num-
workers workers are running. The worker instances are spread out over the different
MATLAB Runtime versions. Once num-workers workers are running, the server instance
returns workers to the pool of available workers based on the worker-memory-trigger
property and the queue-time-trigger property. Once worker is returned to the pool, it
can be allocated to process new requests using any of the configured MATLAB Runtime
versions.

See Also

More About
• “Specify the Default MATLAB Runtime for New Server Instances” on page 1-9
• “Specify the MATLAB Runtime for a Server Instance” on page 1-11
• “Edit the Configuration File” on page 1-7
• “Start a Server Instance” on page 1-12

1 Server Management

1-16

Control Worker Restarts
In this section...
“Restart Workers Based on Up Time” on page 1-17
“Restart Workers Based on Amount of Memory in Use” on page 1-17

Restart Workers Based on Up Time
As worker processes evaluate MATLAB functions, the MATLAB workspace accumulates
saved state and other data. This accumulated data can occasionally cause a worker
process to fail. One way to avoid random worker failures is to configure the server
instances to restart worker processes when they have been running for set period.

1 If the server instance is running, stop it.
2 Open the configuration file for the instance in a text editor.

The configuration file is at instanceRoot/config/main_config.
3 Locate the entry for the worker-restart-interval property.

--worker-restart-interval 12:00:00
4 Change the value to the desired restart interval.

For example, restart workers at intervals of 1 hour, 29 minutes, 5 seconds.

--worker-restart-interval 1:29:05
5 Restart the server instance.

Restart Workers Based on Amount of Memory in Use
As worker processes evaluate MATLAB functions, the MATLAB workspace accumulates
saved state and other data. This accumulated data can occasionally cause a worker
process to fail. One way to avoid random worker failures is to configure the server
instances to restart worker processes when they begin consuming a predefined amount of
memory.

This is done by adjusting three configuration properties:

• worker-memory-check-interval— Interval at which workers are polled for memory
usage

 Control Worker Restarts

1-17

• worker-restart-memory-limit — Size threshold at which to consider restarting a worker
• worker-restart-memory-limit-interval — Interval for which a worker can exceed its

memory limit before restart

To adjust memory-based restart thresholds:

1 If the server instance is running, stop it.
2 Open the configuration file for the instance in a text editor.

The configuration file is at instanceRoot/config/main_config.
3 Locate the entry for the worker-memory-check-interval property.

--worker-memory-check-interval 0:00:30
4 Change the value to the desired restart interval.

For example, restart workers at intervals of 1 hour, 29 minutes, 5 seconds.

--worker-memory-check-interval 1:29:05
5 Add an entry for the worker-restart-memory-limit property.

For example, consider restarting workers when they consume 1 GB of memory.

--worker-restart-memory-limit 1GB
6 Add an entry for the worker-restart-memory-limit-interval property.

For example, restart workers when they exceed the memory limit for 1 hour.

worker-restart-memory-limit-interval 1:00:00
7 Restart the server instance.

See Also
num-workers

More About
• “Edit the Configuration File” on page 1-7
• “Support Multiple MATLAB Versions” on page 1-15

1 Server Management

1-18

Install a Server Instance as a Windows Service

In this section...
“Create a New Server Instance as a Windows Service” on page 1-19
“Make an Existing Server Instance a Windows Service” on page 1-19

Create a New Server Instance as a Windows Service
To create a new MATLAB Production Server instance and register it as a Windows
service, use the mps-new command with the --service option.

mps-new /tmp/server_1 --service

You can change the name, description, and user for the Windows service from the defaults
using optional flags to the mps-new command.

The Windows service created for the server instance does not start automatically. You can
edit the configuration for the instance before starting it using the mps-start command.

The Windows service created for the server instance is configured to start when the
machine starts. When the host machine is restarted, the server instance restarts with it.

Make an Existing Server Instance a Windows Service
To create a new Windows service for an existing MATLAB Production Server instance, use
the mps-service command with the create option.

mps-service -C /tmp/server_1 create

You can change the name, description, and user for the Windows service from the defaults
using optional flags to the mps-service command.

The Windows service created for the server instance is configured to start when the
machine starts. When the host machine is restarted, the server instance restarts with it.

 Install a Server Instance as a Windows Service

1-19

See Also

More About
• “Recovery Options for a Server Instance Running as a Windows Service” on page 1-

21

1 Server Management

1-20

Recovery Options for a Server Instance Running as a
Windows Service

You can install a MATLAB Production Server instance to run as a Windows service. For
more information on how to set this up, see “Install a Server Instance as a Windows
Service” on page 1-19.

You can specify how your system responds if the server instance running as a Windows
service fails.

1 Open Service Control Manager in Windows.
2 Locate and double-click the server instance service that you want to configure for

failure recovery.
3 Specify recovery options in the Recovery tab.

See Also
mps-service

 Recovery Options for a Server Instance Running as a Windows Service

1-21

More About
• “Server Overview” on page 1-2
• “Enable HTTPS” on page 3-3

1 Server Management

1-22

Manage Licenses for MATLAB
Production Server

• “Specify or Verify License Server Options in Server Configuration File” on page 2-2
• “Verify Status of License Server using mps-status” on page 2-3
• “Force a License Checkout Using mps-license-reset” on page 2-4

2

Specify or Verify License Server Options in Server
Configuration File

Specify or verify values for License Server options in the server configuration file
(main_config). You create a server by using the mps-new command.

Edit the configuration file for the server. Open the file server_name/config/
main_config and specify or verify parameter values for the following options. See the
comments in the server configuration file for complete instructions and default values.

• license — Configuration option to specify the license servers and/or the license files.
You can specify multiple license servers including port numbers
(port_number@license_server_name), as well as license files, with one entry in
main_config. List where you want the product to search, in order of precedence,
using semi-colons (;) as separators on Windows or colons (:) as separators on Linux.

For example, on a Linux system, you specify this value for license:

 --license 27000@hostA:/opt/license/license.dat:27001@hostB:./license.dat

The system searches these resources in this order:

1 27000@hostA: (hostA configured on port 27000)
2 /opt/license/license.dat (local license data file)
3 27001@hostB: (hostB configured on port 27001)
4 ./license.dat (local license data file)

• license-grace-period — The maximum length of time MATLAB Production Server
responds to HTTP requests, after license server heartbeat has been lost. See the
network license manager documentation for more on heartbeats and related license
terminology.

• license-poll-interval — The interval of time that must pass, after license server
heartbeat has been lost and MATLAB Production Server stops responding to HTTP
requests, before license server is polled, to verify and checkout a valid license. Polling
occurs at the interval specified by license-poll-interval until license has been
successfully checked-out. See the network license manager documentation for more
on heartbeats and related license terminology.

2 Manage Licenses for MATLAB Production Server

2-2

Verify Status of License Server using mps-status
When you enter an mps-status command, the status of the server and the associated
license is returned.

For detailed descriptions of these status messages, see “License Server Status
Information”.

 Verify Status of License Server using mps-status

2-3

Force a License Checkout Using mps-license-reset
Use the mps-license-resetcommand to force MATLAB Production Server to checkout
a license. You can use this command at any time, providing you do not want to wait for
MATLAB Production Server to verify and checkout a license at an interval established by
a server configuration option such as license-grace-period or license-poll-
interval.

2 Manage Licenses for MATLAB Production Server

2-4

Secure a Server

• “Security Overview” on page 3-2
• “Enable HTTPS” on page 3-3
• “Configure Client Authentication” on page 3-5
• “Specify Access to MATLAB Programs” on page 3-7
• “Adjust Security Protocols” on page 3-9
• “Improve Startup Time When Security Is Activated” on page 3-10
• “Access Control” on page 3-11
• “Use Kerberos and Kerberos Delegation” on page 3-18

3

Security Overview
MATLAB Production Server uses HTTPS to establish secure connections between server
instances and clients. The HTTPS layer provides certificate-based authentication for both
clients and server instances. It also provides an encrypted data path between the clients
and server instances. For more information, see “Enable HTTPS” on page 3-3.

The default security settings enable all security protocols and cipher suites, except for the
eNULL cipher suite. You can configure the level of security provided by the HTTPS layer
and the security protocols it supports. For more information, see “Adjust Security
Protocols” on page 3-9.

The default security settings allow all clients to access all programs hosted by the server
instance. The server instance does not authenticate the clients, nor does it perform any
authorization. MATLAB Production Server provides a certificate-based authorization
mechanism for restricting access to specific programs. Using this mechanism, you specify
the MATLAB programs that a client can access. To configure client authorization, see
“Specify Access to MATLAB Programs” on page 3-7. To ensure that only trusted client
applications have access to a server instance, configure the server instance to require
client authentication. For more information, see “Configure Client Authentication” on
page 3-5.

3 Secure a Server

3-2

Enable HTTPS
MATLAB Production Server uses HTTPS to establish secure connections between server
instances and clients. HTTPS provides certificate-based authentication for the client to
validate the connection to the server. Optionally, you can configure HTTPS such that the
server can provide certificate-based authentication of the client. For more information on
configuring client authentication, see “Configure Client Authentication” on page 3-5.
HTTPS also provides an encrypted data path between the clients and server instances.

To configure HTTPS, specify the following properties in the main_config configuration
file of the server instance:

• https: HTTPS port
• x509-cert-chain: Valid certificate stored in a PEM-format certificate chain
• x509-private-key: Valid private key stored in PEM format

For more information about the server configuration file, see “Edit the Configuration File”
on page 1-7.

The following configuration excerpt configures a server instance to accept secure
connections on port port, using the certificate stored in ./x509/my-cert.pem and the
unencrypted private key stored in ./x509/my-key.pem.

...
--https port
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem
...

Starting in R2019b, if https is enabled on the server, you must set both the x509-cert-
chain and x509-private-key properties; otherwise, the server fails to start.

In production settings that require greater security than that provided by an unencrypted
private key, use an encrypted private key. You specify the passphrase for decrypting the
private key in a file with owner-read-only access, and use the x509-passphrase property to
tell the server instance about it.

...
--https port
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem

 Enable HTTPS

3-3

--x509-passphrase ./x509/my-passphrase
...

You must set either the http property, the https property or both properties for the
server to start. To ensure that clients communicate with the server using only HTTPS and
not HTTP, you must disable the http property. If both the https and http properties are
enabled, clients can communicate with the server using both HTTPS and HTTP. It is
recommended that you enable the https property unless HTTP support is required.

See Also
client-credential-delegation | ssl-protocols | ssl-tmp-ec-param

More About
• “Configure Client Authentication” on page 3-5
• “Specify Access to MATLAB Programs” on page 3-7
• “Adjust Security Protocols” on page 3-9

3 Secure a Server

3-4

Configure Client Authentication
To ensure that only trusted client applications have access to a server instance, configure
the server instance to require client authentication:

1 Set the ssl-verify-peer-mode configuration property to verify-peer-require-
peer-cert.

2 Configure the server instance to use the system provided certificate authority (CA)
store, a server specific CA store, or both.

Use these configuration properties to control the CA stores used by the server
instance:

• x509-ca-file-store specifies a PEM-format CA store to authenticate clients.
• x509-use-system-store directs the server instance to use the system CA store to

authenticate clients.

Note x509-use-system-store does not work on Windows.
3 Optionally configure the server instance to respect any certificate revocation lists

(CRLs) in the CA store.

Specify this behavior by adding the x509-use-crl property to the server’s
configuration. If this property is not specified, the server instance ignores the CRLs
and may authenticate clients using revoked credentials.

Caution You must add a CRL list to the server’s CA store before adding the x509-
use-crl property. If the CA store does not include a CRL list, the server crashes.

This configuration excerpt configures a server instance to authenticate clients using the
system CA store and to respect CRLs:

...
--https port
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem
--x509-passphrase ./x509/my-passphrase
--ssl-verify-peer-mode verify-peer-require-cert
--x509-use-system-store
--x509-use-crl
...

 Configure Client Authentication

3-5

The server must be configured to use HTTPS in order to configure client authentication.

See Also
https | x509-cert-chain | x509-private-key

More About
• “Enable HTTPS” on page 3-3
• “Adjust Security Protocols” on page 3-9
• “Specify Access to MATLAB Programs” on page 3-7

3 Secure a Server

3-6

Specify Access to MATLAB Programs
By default, server instances allow all clients to access all hosted MATLAB programs.
MATLAB Production Server provides a certificate-based authorization mechanism for
restricting access to specific programs. The ssl-allowed-client property uses this
mechanism to specify the MATLAB programs that a client can access. The property
specifies a comma-separated list of clients, identified by their certificate’s common name,
that are allowed to access MATLAB programs. You also use the property to list specific
MATLAB programs that a client is allowed to access.

If you do not specify the ssl-allowed-client property, the server instance does not
restrict access to the hosted MATLAB programs. After you add an entry for the ssl-
allowed-client property, the server instance authorizes only the listed clients to
access the hosted MATLAB programs.

For example, to only authorize clients with the common names jim, judy, and ash to use
the MATLAB programs hosted on a server instance, add this configuration excerpt:

--ssl-allowed-client jim,judy,ash

You can restrict access further by only authorizing specific clients to have access to
specific MATLAB programs. Do this by adding :allowedPrograms to the value of the
ssl-allowed-client property. allowedPrograms is a comma-separated list of
program names.

For example, to allow clients with the common name jim access to all hosted programs,
allow clients with the common name judy access to the programs tail and zap, and
allow clients with the common name ash or joe access to the programs saw and travel,
add this configuration excerpt:

--ssl-allowed-client jim
--ssl-allowed-client judy:tail,zap
--ssl-allowed-client ash,joe:saw,travel

The server must be configured to use HTTPS in order to use the property.

See Also
https | x509-cert-chain | x509-private-key

 Specify Access to MATLAB Programs

3-7

More About
• “Enable HTTPS” on page 3-3
• “Configure Client Authentication” on page 3-5
• “Adjust Security Protocols” on page 3-9

3 Secure a Server

3-8

Adjust Security Protocols
The default security settings for MATLAB Production Server enable all security protocols
and cipher suites, except for the eNULL cipher suite. Use the ssl-protocols and ssl-ciphers
properties to adjust the level of security.

By default, MATLAB Production Server instances try to use TLSv1.2 to secure
connections between client and server. The server supports connections using TLSv1,
TLSv1.1, and TLSv1.2. Use the ssl-protocols property to specify a list of allowed SSL
protocols.

For example, to disable the TLSv1.1 and TLSv1.2 protocols, add this configuration
excerpt:

--ssl-protocols TLSv1

Because TLSv1.1 and TLSv1.2 are not included in the list, the server instance does not
enable the protocols.

Set the ssl-ciphers property in the server instance configuration to restrict the cipher
suites used by the server instance.

For example, to enable only high-strength cipher suites, add this configuration excerpt:

--ssl-ciphers HIGH

See Also
ssl-tmp-ec-param | x509-private-key

More About
• “Enable HTTPS” on page 3-3
• “Configure Client Authentication” on page 3-5
• “Specify Access to MATLAB Programs” on page 3-7

 Adjust Security Protocols

3-9

Improve Startup Time When Security Is Activated
When a server instance is configured to use HTTPS, it generates an ephemeral DH key at
startup. Generating the DH key at startup provides more security than reading it from a
file on disk. However, this can add a couple of minutes to a server instance’s startup time.

If you need the server instance to start up without delay and are not concerned about the
loss of security, you can configure the server instance to read the ephemeral DH key from
a file using the ssl-tmp-dh-param configuration property. The ssl-tmp-dh-param
property specifies the file storing the DH key in PEM format.

See Also
https | ssl-ciphers | ssl-tmp-ec-param

More About
• “Enable HTTPS” on page 3-3
• “Configure Client Authentication” on page 3-5
• “Specify Access to MATLAB Programs” on page 3-7
• “Adjust Security Protocols” on page 3-9

3 Secure a Server

3-10

Access Control

Access Control Configuration File
To provide an identity to each user, you define an access control configuration file in JSON
format. Each identity provider has a different configuration file to enable authorization.
The default name for the JSON file for Azure® Active Directory is azure_ad.json.

Azure Active Directory configuration parameters are as follows:

• tenantId (Required): Azure Active Directory tenant ID. To locate your tenant ID, go
to https://portal.azure.com. On the left panel, select Azure Active Directory, then on
the Overview panel, select Properties. The hexadecimal code under Directory ID is
your tenant ID.

• serverAppId (Required): MATLAB Production Server application ID as registered in
Azure Active Directory. To locate your serverAppID, go to https://portal.azure.com.
On the left panel, select Azure Active Directory, then on the Overview panel, select
App registrations. Then select MPS server to find the Application ID, which is your
serverAppID.

• jwksUri (Optional): Used to get Azure Active Directory JSON Web Key Set that is
used to verify token signature. Default is https://login.microsoftonline.com/common/
discovery/keys.

• issuerBaseUri (Optional): Used with tenantId to validate issuer of the token. For
Azure Active Directory, default is https://sts.windows.net/.

• jwksTimeOut (Optional): Maximum time the jwks request is allowed to take. Default
is 120 seconds.

The format of the configuration file is as follows:

{
 "tenantId": "54ss4lk1-8428-7256-5fvh-d5785gfhkjh6",
 "serverAppId": "j21n12bg-3758-3r78-v25j-35yj4c47vhmt",
 "jwksUri": "https://login.microsoftonline.com/common/discovery/keys",
 "issuerBaseUri": "https://sts.windows.net/",
 "jwksTimeOut": 120
}

 Access Control

3-11

https://portal.azure.com
https://portal.azure.com
https://login.microsoftonline.com/common/discovery/keys
https://login.microsoftonline.com/common/discovery/keys
https://sts.windows.net/

Access Control Policy File
To use access control for MATLAB Production Server, the server admin should define an
access control policy file in JSON format. The default name for the JSON file is
ac_policy.json.

The policy file is read on server startup. If it does not exist or contains errors, the server
does not start, and an error message is written to main.log file found in the log-root
directory.

Once the server has started, the policy file is scanned every five seconds for changes. If
the policy file is deleted or contains errors, the server continues to run, but all requests
are denied. Again, an error message is written to the main.log file.

The JSON file has a single JSON object that defines the schema version and a Policy
Block. The Policy Block consists of a list of policies. Each policy contains a Rule Block that
defines a set of rules and consists of a Subject Block, a Resource Block, and an Action
Block.

3 Secure a Server

3-12

The schema version has a value that is a JSON string in the format
<major#>.<minor#>.<patch#>, with each number specified as a nonnegative integer.

Policy Block

The policy block contains a list of policies required for access control. Currently, only a
single policy can be specified in a policy file.

 Access Control

3-13

"policy" : [
 {
 "id": "<policy_id>",
 "description": "<policy_description>",
 <rule_block>
 }
]

An ID is required for each policy. <policy_id> must be unique for each policy. Any
leading or trailing white space is removed.

The description is optional for a policy.

Rule Block

The rule block contains a list of rule objects.

"rule":[
 {
 "id": "<rule_id>",
 "description": "<rule_description>",
 <subject_block>,
 <resource_block>,
 <action_block>
 }
]

Multiple rules can exist in a rule block, for example: "rule": [<rule>,
<rule>, ...].

An ID is required for each rule. <rule_id> must be unique for each rule. Any leading or
trailing white space is removed.

The description is optional for a rule.

Subject Block

The subject block of a rule defines who can access the resources. Currently, only the
groups attribute is supported.

"subject" : {"groups": ["<group_id>", "<group_id>", ...]}

For Azure Active Directory, a list of group IDs can be specified to control which groups
can access the resources defined in the rule.

3 Secure a Server

3-14

Get Group ID from Azure Active Directory Based on Group Display Name

1 Open Azure Active Directory graph explorer on https://
graphexplorer.azurewebsites.net, and login.

2 Use query https://graph.windows.net/<tenant>/groups?
$filter=startswith(displayName,'<groupname>') where <tenant> is the
tenant name, and <groupname> is the name of a specific group.

3 Search for objectId of the specific group in the response.

Get All Group IDs for a Certain User from Azure Active Directory

1 Open Azure Active Directory graph explorer on https://
graphexplorer.azurewebsites.net, and login.

2 Use query https://graph.windows.net/<tenant>//<tenant>/users/
<username>@<tenant>/memberOf where <tenant> is the tenant name, and
<username> is the name of a specific user.

3 For all groups where securityEnabled is true, search for objectId in the response.

Resource Block

The resource block of a rule describes the object being accessed. Currently, only a ctf
file can be accessed.

"resource" : {"ctf": ["<ctf_name>", "<ctf_name>", ...]}

You can use ctf_name to access multiple ctf files by using the wildcard character *. For
example, if you want to access all ctf files whose names start or end with 'test', you
would specify <ctf_name> as test* or *test, respectively. If you use * as the
<ctf_name>, you can access all the ctf files.

Action Block

The action block of a rule describes the action being attempted on the resource.
Currently, only the action execute is supported.

"action" : ["execute"]

Example of a JSON Policy File

The following example defines an access control policy with three rules.

• All users belonging to a group with ID aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa
can execute the ctf file magic.

 Access Control

3-15

https://graphexplorer.azurewebsites.net
https://graphexplorer.azurewebsites.net
https://graphexplorer.azurewebsites.net
https://graphexplorer.azurewebsites.net

• All users belong to groups with id aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa and
bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb can execute the ctf files monteCarlo
and fastFourier.

• All users belong to Quality Engineering group cccccccc-cccc-cccc-cccc-
cccccccccccc can execute all ctfs starting with test.

Access is denied for all other requests.

{
 "version": "1.0.0",
 "policy" : [
 {
 "id": "policy1",
 "description": "MPS Access Control policy for XYZ Corp.",
 "rule": [
 {
 "id": "rule1",
 "description": "group A can execute ctf magic",
 "subject": { "groups": ["aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"] },
 "resource": { "ctf": ["magic"] },
 "action": ["execute"]
 },
 {
 "id": "rule2",
 "description": "group A and group B can execute ctf monteCarlo and fastFourier",
 "subject": { "groups": ["aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa", "bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb"] },
 "resource": { "ctf": ["monteCarlo", "fastFourier"] },
 "action": ["execute"]
 },
 {
 "id": "rule3",
 "description": "QE group C can execute any ctf starts with test",
 "subject": { "groups": ["cccccccc-cccc-cccc-cccc-cccccccccccc"] },
 "resource": { "ctf": ["test*"] },
 "action": ["execute"]
 }
]
 }
]
}

3 Secure a Server

3-16

See Also
access-control-policy

External Websites
• https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-

graph-api-quickstart

 See Also

3-17

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-graph-api-quickstart
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-graph-api-quickstart

Use Kerberos and Kerberos Delegation
To authenticate user access to a MATLAB Production Server instance, you need to
configure Kerberos. To delegate a client’s credential to a next hop web server or a
database server that is protected by Kerberos, you need to configure Kerberos
Delegation. Configuring Kerberos and Kerberos Delegation requires domain administrator
privileges. Currently, you can use Kerberos and Kerberos Delegation with MATLAB
Production Server instances running on Windows Server® operating systems with a
Windows Key Distribution Center. To configure Kerberos and Kerberos delegation, consult
your IT / Windows System Administrator, and follow these steps:

• Set up a service account for the MATLAB Production Server and register a service
principal name for MATLAB Production Server service instance.

• Configure constrained delegation without protocol transition for the service account.
• Configure the local security privilege for the MATLAB Production Server service

account.
• Enable Kerberos and Kerberos Delegation in the MATLAB Production Server
configuration file (main_config). For more information, see http-authentication-
method and client-credential-delegation.

Only the following MATLAB functions within a deployable archive (.ctf) support using
Kerberos Delegation:

• webread
• webwrite
• “HTTP Interface” (MATLAB) functions
• Database Toolbox™ functions (requires an ODBC driver)

All other functions within a deployable archive (.ctf) are executed using the credential
of the MATLAB Production Server instance.

Supported Environment
Option Requirement
Operating system Windows Server
Kerberos Delegation Constrained delegation without protocol

transition

3 Secure a Server

3-18

Option Requirement
Key distribution center Windows Server 2003 or later
Client • RESTful client over HTTP/HTTPS (HTTP

1.1) with JSON payload
• The RESTful client must be one that

supports SPNEGO/Kerberos—for
example, curl with the --negotiate
option or .NET HttpClient

MATLAB Runtime MATLAB Runtime R2019b or later.
Deployable archive packaging MATLAB Compiler SDK R2019b or later
Database server Microsoft® SQL Server® 2012 or later
Database driver Microsoft SQL Server ODBC driver version

11 or later

See Also
client-credential-delegation | http-authentication-method

 See Also

3-19

Troubleshooting

• “Verify Server Status” on page 4-2
• “Diagnose a Server Instance” on page 4-5
• “Diagnose a Corrupted MATLAB Runtime” on page 4-6
• “Server Diagnostic Tools” on page 4-7
• “Manage Log Files” on page 4-9
• “Common Error Messages and Resolutions” on page 4-11

4

Verify Server Status
In this section...
“Procedure” on page 4-2
“License Server Status Information” on page 4-3

Use the mps-status command to verify the status of a server.

Procedure
1 Open a system command prompt.
2 Enter the following command:

mps-status [-C path/]server_name

where:

• -C path/ — Path to the server instance. path should end with the name of the
server to be queried for status.

• server_name — Name of the server to be queried for status.

Example

To verify the status of a server instance prod_server_1 located at \tmp
\prod_server_1, type at the system command prompt

mps-status -C \tmp\prod_server_1

Output:

• If prod_server_1 is running and operating with a valid license.

\tmp\prod_server_1 STARTED
License checked out

• If prod_server_1 is unable to check out valid license.

\tmp\prod_server_1 STARTED
WARNING: lost connection to license server -
request processing will be disabled at 2019-Jun-27
15:40:31.002137 Eastern Daylight Time unless
connection to license server is restored.

4 Troubleshooting

4-2

or

\tmp\prod_server_1 STARTED
ERROR: lost connection to license server -
request processing disabled.

To verify whether the server has started or stopped after issuing mps-restart and mps-
stop commands, use mps-status.

License Server Status Information
In addition to the status of the server, mps-status also displays the status of the license
server associated with the server you are querying.

License Server Status Message Message Description
License checked out The server is operating with a valid license. The

server is communicating with the License
Manager, and the required number of license
keys are checked out.

WARNING: lost connection
to license server -
request processing
will be disabled
at time unless connection
to license server is restored

The server has lost communication with the
License Manager, but the server is still fully
operational and will remain operational until the
specified time. At time, if connectivity to the
license server has not been restored, request
processing will be disabled until licensing is
reestablished.

ERROR: lost connection
to license server - request
processing disabled

The server has lost communication with the
License Manager for a period of time exceeding
the grace period. Request processing has been
suspended, but the server is actively attempting
to reestablish communication with the License
Manager. Request processing resumes if the
sever is able to reestablish communication with
the License Manager.

See Also
mps-restart | mps-stop

 See Also

4-3

More About
• “Health Check”

4 Troubleshooting

4-4

Diagnose a Server Instance
To diagnose a problem with a server instance or configuration of MATLAB Production
Server, do the following, as needed:

• Check the logs for warnings, errors, or other informational messages.
• Check Process Identification Files (PID files) for information relating to problems with

MATLAB Runtime worker processes.
• Check Endpoint Files for information relating to problems relating to the server’s

bound external interfaces — for example, a problem connecting a client to a server.
• Use server diagnostic tools, such as mps-which, as needed.

 Diagnose a Server Instance

4-5

Diagnose a Corrupted MATLAB Runtime
This example shows a typical diagnostic procedure you might follow to solve a problem
starting server prod_server_x.

After you issue the command:

mps-start prod_server_x

from within the server instance folder (prod_server_x), you get the following error:

Server process exited with return code: 4
(check logs for more information)
Error while waiting for server to start: The I/O operation
has been aborted because of either a thread exit
or an application request

To solve this issue, you might check the log files for more detailed messages, as follows:

1 Navigate to the server instance folder (prod_server_x) and open the log folder.
2 Open main.err with any text editor. Note the following message listed under

Server startup error:

Dynamic exception type: class std::runtime_error
std::exception::what: bad MATLAB Runtime installation:
C:\Program Files\MATLAB\MATLAB Runtime\v82
(C:\Program Files\MATLAB\MATLAB Runtime\v82\bin\
win64\mps_worker_app could not be found)

3 The message indicates the installation of the MATLAB Runtime is incomplete or has
been corrupted. To solve this problem, reinstall the MATLAB Runtime.

4 Troubleshooting

4-6

Server Diagnostic Tools

In this section...
“Log Files” on page 4-7
“Process Identification Files (PID Files)” on page 4-7
“Endpoint Files” on page 4-7

Log Files
Each server writes a log file containing data from both the main server process, as well as
the workers, named server_name/log/main.log. You can change the primary log
folder name from the default value (log) by setting the option log-root in
main_config.

The primary log folder contains the main.log file, as well as a symbolic link to this file
with the auto-generated name of main_date_fileID.log.

The stdout stream of the main server process is captured as log/main.out.

The stderr stream of the main server process is captured as log/main.err.

Process Identification Files (PID Files)
Each process that the server runs generates a Process Identification File (PID File) in the
folder identified as pid-root in main_config.

The main server PID file is main.pid; for each MATLAB Runtime worker process, it is
worker-n.pid, where n is the unique identifier of the worker.

PID files are automatically deleted when a process exits.

Endpoint Files
Endpoint files are generated to capture information about the server’s bound external
interfaces. The files are created when you start a server instance and deleted when you
stop it.

 Server Diagnostic Tools

4-7

server_name/endpoint/http contains the IP address and port of the clients
connecting to the server. This information can be useful in the event that zero (0) is
specified in main_config, indicating that the server bind to a free port.

4 Troubleshooting

4-8

Manage Log Files

In this section...
“Best Practices for Log Management” on page 4-9
“Log Retention and Archive Settings” on page 4-9
“Setting Log File Detail Levels” on page 4-10

Best Practices for Log Management
Use these recommendations as a guide when defining values for the options listed in “Log
Retention and Archive Settings” on page 4-9.

• Avoid placing log-root and log-archive-root on different physical file systems.
• Place log files on local drives, not on network drives.
• Send MATLAB output to stdout. Develop an appropriate, consistent logging strategy

following best MATLAB coding practices. See MATLAB Programming Fundamentals
for guidelines.

Log Retention and Archive Settings
Log data is written to the server’s main.log file for as long as a specific server instance
is active, or until midnight. When the server is restarted, log data is written to an archive
log, located in the archive log folder specified by log-archive-root.

You can set parameters that define when main.log is archived using the following
options in each server’s main_config file.

• log-rotation-size — When main.log reaches this size, the active log is written to
an archive log (located in the folder specified by log-archive-root).

• log-archive-max-size — When the combined size of all files in the archive folder
(location defined by log-archive-root) reaches this limit, archive logs are purged
until the combined size of all files in the archive folder is less than log-archive-
max-size. Oldest archive logs are deleted first.

Specify values for these options using the following units and notations:

 Manage Log Files

4-9

Represent these units of
measure...

Using this notation... Example

Byte b 900b
Kilobyte (1024 bytes) k 700k
Megabytes (1024 kilobytes) m 40m
Gigabytes (1024 megabytes) g 10g
Terabytes (1024 gigabytes) t 2t
Petabytes (1024 terabytes) p 1p

Note The minimum value you can specify for log-rotation-size is 1 megabyte.

On Windows 32-bit systems, values larger than 232 bytes are not supported. For example,
specifying 5g is not valid on Windows 32-bit systems.

Setting Log File Detail Levels
The log level provides different levels of information for troubleshooting:

• error — Notification of problems or unexpected results.
• warning — Events that could lead to problems if unaddressed.
• information — High-level information about major server events.
• trace — Detailed information about the internal state of the server.

The log level is set using the log-severity configuration property.

Before you call support, you should set logging levels to trace.

4 Troubleshooting

4-10

Common Error Messages and Resolutions
In this section...
“(404) Not Found” on page 4-11
“Error: Bad MATLAB Runtime Instance” on page 4-11
“Error: Server Instance not Specified” on page 4-11
“Error: invalid target host or port” on page 4-12
“Error: HTTP error: HTTP/x.x 404 Component not found” on page 4-12

(404) Not Found
Commonly caused by requesting a component that is not deployed on the server, or trying
to call a function that is not exported by the given component.

Verify that the name of the deployable archive specified in your Uri is the same as the
name of the deployable archive hosted in your auto_deploy folder.

Error: Bad MATLAB Runtime Instance
Common causes of this message include:

• You are not properly qualifying the path to the MATLAB Runtime. You must include the
version number. For example, you need to specify:

C:\Program Files\MATLAB\MATLAB Runtime\vn.n

not

C:\Program Files\MATLAB\MATLAB Runtime

Error: Server Instance not Specified
MATLAB Production Server can’t find the server you are specifying.

Ensure you are either entering commands from the folder containing the server instance,
or are using the -C command argument to specify a precise location of the server
instance.

 Common Error Messages and Resolutions

4-11

For example, if you created server_1 in C:\tmp\server_1, you would issue the mps-
start command from within that folder to avoid specifying a path with the -C argument:

cd c:\tmp\server_1
mps-start server_1

For more information, see “Start a Server Instance” on page 1-12.

Error: invalid target host or port
The port number specified has not been properly defined to your computer. Define a valid
port and retry the command.

Error: HTTP error: HTTP/x.x 404 Component not found
This error can be caused by a number of reasons. Consult the “Log Files” on page 4-7 for
further details on the precise cause of the problem.

4 Troubleshooting

4-12

Impact of Server Configurations on
Processing Asynchronous Requests

5

Impact of Server Configurations on Processing
Asynchronous Requests

MATLAB Production Server supports asynchronous execution of client requests. The
following configurations in the server’s main_config file impact the how the server
supports this functionality:

• request-timeout
• server-memory-threshold
• server-memory-threshold-overflow-action

The request-timeout configuration parameter specifies the duration after which a
request in a terminal states times out and gets deleted.

The server-memory-threshold configuration parameter specifies the size threshold of
the server process at which point action needs to be taken to manage the responses. The
size threshold includes both the size of the base server process plus any growth in the
server process resulting from processing a client request.

The server-memory-threshold-overflow-action configuration parameter specifies
the action to be taken when the memory size threshold of server process has been
breached. The possible actions are that the responses be archived to disk or the request
be purged.

Setting too small a request-timeout can lead to a request being timed out before a
client fetches the response.

Since the server-memory-threshold includes both the size of the base server process
plus any growth in the server process resulting from processing client requests, setting
too small a server-memory-threshold can lead to responses being archived or purged
before being retrieved.

Since the operating system governs memory management, the memory footprint size of
the base server process may not return to its original size even after a response has been
archived or purged. The size of the base server process in most cases ends up being
larger than its original size. As a result, subsequent requests to the server may have a
much smaller range of memory to work with before reaching the server-memory-
threshold.

5 Impact of Server Configurations on Processing Asynchronous Requests

5-2

Setting the server-memory-threshold to be too large will result in a large server
process footprint which may not be required.

These configuration parameters need to be set appropriately and carefully balanced in
order to provide a suitable contract between a client and a server.

See Also
cors-allowed-origins | response-archive-limit | response-archive-root

More About
• “Edit the Configuration File” on page 1-7

 See Also

5-3

Set Up MATLAB Production Server
Dashboard

• “Set Up and Log In to MATLAB Production Server Dashboard” on page 6-2
• “Remove MATLAB Production Server Dashboard” on page 6-7

6

Set Up and Log In to MATLAB Production Server
Dashboard

In this section...
“Set Up the Dashboard” on page 6-2
“Log In to the Dashboard” on page 6-5
“Reset the Admin Password” on page 6-5

Set Up the Dashboard

Warning You must have admin privileges on Windows to complete setup.

To set up an instance of the MATLAB Production Server dashboard:

1 Open a Terminal or Command Window, and navigate to the dashboard folder in the
MATLAB Production Server installation directory.

Platform Default Directory Where the MATLAB Production Server
dashboard is Installed

Windows
(Administrato
r)

C:\Program Files\MATLAB\MATLAB Production Server
\R2019b\dashboard

Linux® /usr/local/MATLAB/MATLAB_Production_Server/R2019b/
dashboard

2 Execute the script mps-dashboard with the setup option, and when prompted,
specify the directory for dashboard setup. You must have write privileges to the
directory from where you are running the mps-dashboard script, and to the
directory where the dashboard is going to be set up.

6 Set Up MATLAB Production Server Dashboard

6-2

Platform Script for Dashboard Setup
Windows
(Administrato
r)

> mps-dashboard.bat setup

For example:

> mps-dashboard.bat setup
Specify a workspace directory for MATLAB Production Server Dashboard: C:\mps\dashboard

Linux $./mps-dashboard.sh setup

For example:
$./mps-dashboard.sh setup
Specify a workspace directory for MATLAB Production Server Dashboard: /opt/mps/dashboard

You receive a message acknowledging that the dashboard has been successfully
setup.

Tip To directly specify a directory when setting up the dashboard, use the -C option
after the setup option and provide a directory name.

For example, in Windows: > mps-dashboard.bat setup -C D:\mps\dashboard

For example, in Linux: $./mps-dashboard.sh setup -C /opt/mps/
dashboard

Note For a complete list of options that can be passed to the mps-dashboard script,
pass a ? as an option to the mps-dashboard script.

For example, in Windows type:

> mps-dashboard.bat ?

In Linux, type:

$./mps-dashboard.sh ?

The complete list of options are:

setup | start | stop | remove | reset_admin_password

 Set Up and Log In to MATLAB Production Server Dashboard

6-3

Note Windows only: If your setup fails when using the command > mps-
dashboard.bat setup, verify that your system has Visual C++ Redistributable
Packages for Visual Studio® 2013 installed.

You can also fix this issue by appending your system path with $MPS_ROOT/bin/
win64 where $MPS_ROOT is the directory where MATLAB Production Server is
installed.

3 Execute the mps-dashboard script with the start option to start the dashboard.

Platform Script to Start Dashboard
Windows
(Administrato
r)

> mps-dashboard.bat start

Linux $./mps-dashboard.sh start

You will get a message indicating the host and port where the dashboard is running.
The default host and port are localhost and 9090, respectively.

Tip Windows only: To run the dashboard instance as a background process in
Windows, precede the mps-dashboard script with command start /B.

For example: > start /B mps-dashboard.bat start

Note You can change the default port used by dashboard by editing the --
node_server_port option in config.txt file. You can find the config.txt file
here:

Platform Location of config.txt File
Windows C:\Program Files\MATLAB\MATLAB Production Server

\R2019b\dashboard\config\config.txt
Linux /usr/local/MATLAB/MATLAB_Production_Server/R2019b/

dashboard/config/config.txt

Other customizations to the setup process can be made by editing relevant parts of
the config.txt file.

4 Open a web browser, and type the host and port number that were displayed in the
previous step.

6 Set Up MATLAB Production Server Dashboard

6-4

For example:

http://localhost:9090

Log In to the Dashboard
To log in to MATLAB Production Server Dashboard follow this procedure:

1 Open a web browser, and type the host and port number that were displayed at the
end of the install process.

For example:

http://localhost:9090
2 Type the following information at the login screen for the username and password:

Username: admin

Password: admin

You are now logged into the MATLAB Production Server Dashboard.

Reset the Admin Password
You can use the mps-dashboard script with the option reset_admin_password to
change the admin password.

Platform Script to Reset the Admin Password
Windows
(Administrator
)

> mps-dashboard.bat reset_admin_password

Linux $./mps-dashboard.sh reset_admin_password

Warning The reset_admin_password option should not be executed while dashboard
is still running. First, stop dashboard execution using the mps-dashboard script with the
stop option and then reset the admin password.

 Set Up and Log In to MATLAB Production Server Dashboard

6-5

See Also

Related Examples
• “Remove MATLAB Production Server Dashboard” on page 6-7

6 Set Up MATLAB Production Server Dashboard

6-6

Remove MATLAB Production Server Dashboard
To remove MATLAB Production Server Dashboard:

1 Open a Terminal or Command Window, and navigate to the dashboard folder in the
MATLAB Production Server installation directory.

Platform Default Directory Where MATLAB Production Server
Dashboard is Installed

Windows
(Administrato
r)

C:\Program Files\MATLAB\MATLAB Production Server
\R2017b\dashboard

Linux /usr/local/MATLAB/MATLAB_Production_Server/R2017b/
dashboard

2 Execute the mps-dashboard script with the stop option.

Platform Script to Stop Dashboard
Windows
(Administrato
r)

> mps-dashboard.bat stop

Linux $./mps-dashboard.sh stop

Note You need to complete this step only if dashboard is running.
3 Execute the mps-dashboard script with the remove option.

Platform Script to Remove Dashboard
Windows
(Administrato
r)

> mps-dashboard.bat remove

Linux $./mps-dashboard.sh remove

You receive a message acknowledging that dashboard was successfully removed.

Note Attempting to remove the dashboard while it is still running will result in an
error.

 Remove MATLAB Production Server Dashboard

6-7

The procedure will remove the following directories and files from the directory where
dashboard was set up:

data
mps_workspace
.pid

If you run into any issues while removing dashboard, manually delete the .pid file and
re-run the mps-dashboard script with the remove option.

Note In Linux, if you started the dashboard using the & control operator, you don't need
to open a new Terminal. The & control operator makes command run in the background.

In Windows, if dashboard is running, you will not have access to the command prompt.
Therefore, you need to open a new Command Window to stop any running dashboard
instances.

Note Removing dashboard does not uninstall it from the system. It removes the instance
that was set up. The dashboard remains installed as part of MATLAB Production Server. If
you want to set up the dashboard again, use the mps-dashboard script with the setup
option.

See Also

Related Examples
• “Set Up and Log In to MATLAB Production Server Dashboard” on page 6-2

6 Set Up MATLAB Production Server Dashboard

6-8

Commands — Alphabetical List

7

mps-check
Test and diagnose a MATLAB Production Server instance for problems

Syntax
mps-check [--timeout seconds] host:port

Description
mps-check sends a request to a MATLAB Production Server instance and receives a
status report that is used to identify issues that cause the product to run less than
optimally.

Information reported by mps-check to stdout include:

• Status of the server instance
• Port the HTTP interface is listening on
• Deployed archives for a server instance

Before using mps-check, you must deploy mcrroot/bin/arch/mps_check.ctf to the
server instance.

• mcrroot is the path to the MATLAB Runtime installation folder.
• arch is standard abbreviation for the system’s operating system and hardware

architecture.

Input Arguments
• --timeout seconds — The time, in seconds, to wait for a response from the server

before timing out. The default is two minutes.
• host — The host name of the machine running the server instance.
• port — The port number on which the server instance listens for requests.

7 Commands — Alphabetical List

7-2

Examples
Display diagnostic information for the server instance running on port 9910 of the local
computer.

mps-check localhost:9910

Connecting to localhost:9910
Connected
Sending HTTP request
HTTP request sent
HTTP response received
MPS status check completed successfully

More About

Server Instance
Server instance is an instance of the MATLAB Production Server. The files contained in
the folder created by mps-new, defined by path/, comprise one configuration of the
MATLAB Production Server product.

Introduced in R2012b

 mps-check

7-3

mps-license-reset
Force a server instance to immediately attempt license checkout

Syntax
mps-license-reset [-C path/]server_name

Description
mps-license-reset [-C path/]server_name triggers the server to checkout a
license immediately, regardless of the current license status. License keys that are
currently checked out are checked in first.

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance.

server_name

Server checking out license

Examples
Create a new server instance and display the status of each folder in the file hierarchy, as
the server instance is created:

mps-license-reset -C /tmp/server_2

7 Commands — Alphabetical List

7-4

See Also
mps-status

Topics
“Force a License Checkout Using mps-license-reset” on page 2-4

Introduced in R2012b

 mps-license-reset

7-5

mps-new
Create a server instance

Syntax
mps-new [path/]server_name [-v] [--service] [--service-name name]
[--service-description description] [--service-user user] [--
service-password password] [--noprompt]

Description
mps-new [path/]server_name [-v] [--service] [--service-name name]
[--service-description description] [--service-user user] [--
service-password password] [--noprompt] makes a new folder at path and
populates it with the default folder hierarchy for a server instance.

Input Arguments
path

Path to server instance.

server_name

Name of the server instance to create.

If you are creating a server instance in the current working folder, you do not need to
specify a full path; specify only the server name.

-v

Display the status of each folder in the file hierarchy created to form a server instance

--service

On Windows, register the server instance as a Windows service.

7 Commands — Alphabetical List

7-6

The Windows service default settings are:

• Service Display Name: MATLAB Production Server – path\server_name
• Service Description: MATLAB Production Server running instance path\server_name
• Service User: LocalSystem

The Windows service is configured to start when the machine starts, not at creation of the
service. After you have made configuration changes, start the server instance using mps-
start.

--service-name name

Display name for the Windows service associated with the server instance

--service-description description

Informational statement describing the Windows service associated with the server
instance

--service-user user

Windows account under which the service associated with the server instance should run.
The user account must have read, write, and, delete permissions for the instance
directory as well read and execute permissions for the MATLAB Production Server
installation directory.

--service-password password

Password for the service user account

--noprompt

Indicates that no prompts are generated

Examples

Create a Server Instance
Create a new server instance, and display the status of each folder in the file hierarchy, as
the server instance is created:

 mps-new

7-7

mps-new /tmp/server_1 -v

server_1/.mps-version...ok
server_1/config/...ok
server_1/config/main_config...ok
server_1/endpoint/...ok
server_1/auto_deploy/...ok
server_1/.mps-socket/...ok
server_1/log/...ok
server_1/pid/...ok

Create a Windows Service
Create a new server instance, and register it as a Windows service:

mps-new /tmp/server_1 --service

Tips
• Before creating a server instance, ensure that no file or folder with the specified path

currently exists on your system.
• After issuing mps-new, issue mps-start to start the server instance.

See Also
mps-start | mps-status

Topics
“Create a Server” on page 1-5
“Install a Server Instance as a Windows Service” on page 1-19
“Server Overview” on page 1-2

Introduced in R2012b

7 Commands — Alphabetical List

7-8

mps-profile
Turn profiling on or off

Syntax
mps-profile [-C [path/]instance_name] {on|off} [object...]

Description
mps-profile turns profiling on or off for specified objects.

Input Arguments
• -C — Specify a path to the server instance. If this option is omitted, the current

working folder and its parents are searched to find the server instance.
• on — Activate profiling.
• off — Deactivate profiling.
• object — The list of objects whose profiling behavior is changed.

Valid object values are:

• requests
• worker_pool

If no object is specified the command changes all objects.

Examples
Turn profiling on.

mps-profile on

Turn request profiling on without turning on worker pool profiling.

 mps-profile

7-9

mps-profile on requests

Introduced in R2015b

7 Commands — Alphabetical List

7-10

mps-restart
Stop and start a server instance

Syntax
mps-restart [-C [path/]server_name] [-f]

Description
mps-restart [-C [path/]server_name] [-f] stops a server instance, then
restarts the same server instance. Issuing mps-restart is equivalent to issuing the mps-
stop and mps-start commands in succession.

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance. If you are restarting a server
instance in the current working folder, you do not need to specify a full path. Only specify
the server name.

server_name

Name of the server to be restarted.

-f

Force success even if the server instance is stopped. Restarting a stopped instance
returns an error.

 mps-restart

7-11

Examples
Restart a server instance named server_1, located in folder tmp. Force successful
completion of mps-restart.

mps-restart -f -C /tmp/server_1

Tips
• After issuing mps-restart, issue the mps-status command to verify the server

instance has started.
• If you are restarting a server instance in the current working folder, you do not need

to specify a full path. Only specify the server name.

See Also
mps-start | mps-status | mps-stop

Introduced in R2012b

7 Commands — Alphabetical List

7-12

mps-service
Create or modify a Windows service for a server instance

Syntax
mps-service [-C [path/]server_name] create [--name name] [--
description description] [--user user] [--password password] [--
noprompt]

mps-service [-C [path/]server_name] update [--name name] [--
description description] [--user user] [--password password] [--
instance-root new_path] [--noprompt]

mps-service [-C [path/]server_name] delete
mps-service delete service_name [[--force]|[-f]]
mps-service clean [[--force]|[-f]][[--verbose]|[-v]]

mps-service [-C [path/]server_name] undelete

mps-service [-C [path/]server_name]
mps-service list

Description
mps-service [-C [path/]server_name] create [--name name] [--
description description] [--user user] [--password password] [--
noprompt] creates a Windows service for the server instance.

The Windows service default settings are:

• Service Display Name: MATLAB Production Server – path\server_name
• Service Description: MATLAB Production Server running instance path\server_name
• Service User: LocalSystem

 mps-service

7-13

The Windows service is configured to start when the machine starts, not at creation of the
service. After you have made configuration changes, start the server instance using mps-
start.

mps-service [-C [path/]server_name] update [--name name] [--
description description] [--user user] [--password password] [--
instance-root new_path] [--noprompt] updates the Windows service entry for the
server instance.

mps-service [-C [path/]server_name] delete deletes the Windows service entry
for the server instance.

mps-service delete service_name [[--force]|[-f]] deletes the Windows
service entry by name.

mps-service clean [[--force]|[-f]][[--verbose]|[-v]] deletes invalid
Windows service entries.

Invalid Windows service entries are entries where either the target version of MATLAB
Production Server is not present or the associated server instance no longer exists.

mps-service [-C [path/]server_name] undelete restores the deleted Windows
service entry for the server instance.

mps-service [-C [path/]server_name] displays the Windows service entry for the
server instance.

mps-service list lists the Windows service entries for all server instances.

Input Arguments
-C path/

Path to server instance

server_name

Name of the server instance

--name name

Display name for the Windows service associated with the server instance

7 Commands — Alphabetical List

7-14

--description description

Informational statement describing the Windows service associated with the server
instance

--user user

Windows account under which the service associated with the server instance should run.
The user account must have read, write, and, delete permissions for the instance
directory as well read and execute permissions for the MATLAB Production Server
installation directory.

--password password

Password for the service user account

--instance-root new_path

Updated path to server instance

--noprompt

Indicate that no prompts are generated

--force, -f

Force deletion without prompting

--verbose, -v

Include details about why the service is not valid.

Examples

Create a Windows Service
Create a default Windows service for the server instance server_1:

mps-service -C tmp/server_1 create

 mps-service

7-15

Delete a Windows Service
Delete the Windows service entry for the server instance server_1:

mps-service -C tmp/server_1 delete

List Existing Windows Services
List the Windows service entries for all the server instances installed on the local
machine:

mps-service list

Service Name: MATLAB Production Server {01234567-89ab-cdef-0123-456789abcdef}
Display Name: MATLAB Production Server - My Custom Name
Description: My Description
Instance Root: C:\instances\instance1
MPS Root: C:\Program Files\MATLAB\MATLAB Production Server\R2014b
Status: Started

Service Name: MATLAB Production Server {01234567-89ab-cdef-0123-456789abcdef}
Display Name: MATLAB Production Server - c:\instances\instance2
Description: MATLAB Production Server running instance C:\instances\instance2
Instance Root: C:\instances\instance2
MPS Root: C:\Program Files\MATLAB\MATLAB Production Server\R2015a
Status: Stopped

See Also
mps-new

Topics
“Install a Server Instance as a Windows Service” on page 1-19

Introduced in R2015a

7 Commands — Alphabetical List

7-16

mps-setup
Set up a server environment

Syntax
mps-setup [mcrroot]

Description
mps-setup [mcrroot] sets location of MATLAB Runtime and other start-up options.

The mps-setup command sets the default path to the MATLAB Runtime for all server
instances you create with the product. This is equivalent to presetting the --mcr-root
option in each server’s main_config configuration file.

If a default value already exists in server_name/config/mcrroot, it is updated with
the value specified when you run the command line wizard.

Tips
• Run mps-setup from the script folder. Alternatively, add the script folder to your

system PATH environment variable to run mps-setup from any folder on your system.
• Run mps-setup without arguments and it will search your system for MATLAB

Runtime instances you may want to use with MATLAB Production Server.
• Run mps-setup by passing the path to the MATLAB Runtime as an argument. This

method is ideal for non-interactive (silent) installations.

Input Arguments
mcrroot

Specify a path to the MATLAB Runtime if running mps-setup in non-interactive, or
silent, mode.

 mps-setup

7-17

Examples
Run mps-setup non-interactively, by passing in a path to the MATLAB Runtime instance
that you want MATLAB Production Server to use.

mps-setup "C:\Program Files\MATLAB\MATLAB Runtime\mcrver"

mcrver is the version of the MATLAB Runtime to use.

See Also
mps-new | mps-start | mps-status

Introduced in R2012b

7 Commands — Alphabetical List

7-18

mps-start
Start a server instance

Syntax
mps-start [-C [path/]server_name] [-f]

Description
mps-start [-C [path/]server_name] [-f] starts a server instance

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance.

server_name

Name of the server to be started.

-f

Force success even if the server instance is currently running. Starting a running server
instance is considered an error.

Examples
Start a server instance named server_1, located in folder tmp. Force successful
completion of mps-start.

mps-start -f -C /tmp/server_1

 mps-start

7-19

Tips
• After issuing mps-start, issue the mps-status command to verify the server

instance has STARTED.
• If you are starting a server instance in the current working folder, you do not need to

specify a full path. Only specify the server name.

See Also
mps-new | mps-restart | mps-status | mps-stop

Topics
“Start a Server Instance” on page 1-12
“Server Overview” on page 1-2

Introduced in R2012b

7 Commands — Alphabetical List

7-20

mps-status
Display status of a server instance

Syntax
mps-status [-C [path/]server_name][--statistics|-s
[sample_interval]] [--json|-j]

Description
mps-status [-C [path/]server_name][--statistics|-s
[sample_interval]] [--json|-j] displays the status of the server (STARTED,
STOPPED), along with a full path to the server instance. Additionally, it can display
performance statistics about the server including:

• sample interval in milliseconds
• CPU utilization
• number of active worker processes
• number of requests in queue
• memory usage
• request throughput per second
• total queue time in milliseconds

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance.

server_name

Server to be queried for status

 mps-status

7-21

--statistics [sample_interval], -s [sample_interval]

Specify that statistics are to be collected and displayed.

The optional sample_interval allows you to specify the interval, in milliseconds, over
which statistics are collected. The default is 500.

Note If you specify a sample interval of 0, only one sample is taken. Two samples are
required to compute some statistics such as CPU utilization and throughput.

--json, -j

Specify that statistics are output in JSON format:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Instance Status",
 "description": "Status and Statistics for a MATLAB Production
 Server Instance",
 "type": "object",
 "properties": {
 "instancePath": {
 "description": "Filesystem path for the server
 instance",
 "type": "string"
 },
 "started": {
 "type": "boolean"
 },
 "license": {
 "type": "object",
 "properties": {
 "status": {
 "enum": ["CHECKED_OUT", "IN_GRACE_PERIOD",
 "GRACE_PERIOD_EXPIRED"]
 },
 "type": {
 "enum": ["INVALID", "UNKNOWN", "COMPILED",
 "TRIAL", "EDU", "COMM"]
 },
 "number": {"type": "string"}
 },

7 Commands — Alphabetical List

7-22

 "required": ["status"]
 },
 "statistics": {
 "type": "object",
 "properties": {
 "sampleIntervalMS": {
 "description": "The difference in upTime
 between the two samples, 0 if
 only a single sample was
 taken",
 "type": "number"
 },
 "localTime": {
 "description": "Local Time at server in format
 YYYY.MM.DD HH.MM.SS.SSSSSS",
 "type": "string"
 },
 "upTime": {
 "description": "Time since server start in
 fractional seconds",
 "type": "number"
 },
 "cpuTime": {
 "description": "CPU time consumed by all server
 processes in fractional
 seconds",
 "type": "number"
 },
 "cpuPercentage": {
 "description": "CPU utilzation, computed using
 change in cpuTime and upTime
 between two samples",
 "type": "number"
 },
 "totalRequestsReceived": {
 "description": "The number of valid requests
 received",
 "type": "integer"
 },
 "totalRequestsStarted": {"type": "integer"},
 "totalRequestsFailedToStart": {
 "description": "The number of requests that
 could not be started",
 "type": "integer"

 mps-status

7-23

 },
 "totalRequestsFinishedHttpSuccess": {
 "type": "integer"
 },
 "totalRequestsFinishedHttpError": {
 "description": "Note: does not includes
 requests that failed to start",
 "type": "integer"
 },
 "memoryWorkingSet": {
 "description": "Amount of memory resident in
 physical memory for all
 processes (KiB)",
 "type": "number"
 },
 "throughput": {
 "description": "Requests retired per second,
 computed using the number of
 requests finished or failed to
 start over two samples",
 "type": "number"
 },
 "totalQueueTimeMS": {
 "description": "Sum of the wait times for
 currently queued requests",
 "type": "number"
 }
 }
 }
 },
 "required": ["instancePath", "started"]
}

Examples

Check if a Server is Running
Display status of server instance server_1, residing in tmp folder.

mps-status -C /tmp/server_1

If server is running and running with a valid license:

7 Commands — Alphabetical List

7-24

'/tmp/server_1' STARTED
license checked out

If server is not running:

'/tmp/server_1' STOPPED

Report Statistics in a Human Readable Format
Display statistics for the server instance server_1, residing in tmp folder.

mps-status -C /tmp/server_1 -s

If server is running and running with a valid license:

'/tmp/server_1' STARTED
license checked out
Statistics:
Sample Interval (ms): 500
CPU Utilization (%): 40
Active Worker Processes: 2
Requests in Queue: 1
Memory Usage (KiB): 1024
Throughput (requests/s): 10
Total Queue Time (ms): 100

Report Statistics in JSON Format
Display statistics for the server instance server_1, residing in tmp folder.

mps-status -C /tmp/server_1 -s -j

If server is running and running with a valid license:

{
 "instancePath":"L:\\MPS\\stats",
 "license":{
 "number":"unknown",
 "status":"CHECKED_OUT",
 "type":"COMM"
 },
 "started":true,
 "statistics":{
 "cpuPercentage":0,

 mps-status

7-25

 "cpuTime":1.7628113000000001,
 "localTime":"2015.04.28 16:52:49.874483",
 "memoryWorkingSet":393468,
 "sampleIntervalMS":500.31748899999951,
 "throughput":0,
 "totalQueueTimeMS":0,
 "totalRequestsFailedToStart":0,
 "totalRequestsFinishedHttpError":0,
 "totalRequestsFinishedHttpSuccess":0,
 "totalRequestsReceived":0,
 "totalRequestsStarted":0,
 "upTime":6.9780032949999997
 }
}

See Also
mps-restart | mps-start | mps-stop | mps-which

Topics
“Start a Server Instance” on page 1-12
“Server Overview” on page 1-2
“License Server Status Information” on page 4-3

Introduced in R2012b

7 Commands — Alphabetical List

7-26

mps-stop
Stop a server instance

Syntax
mps-stop [-C [path/]server_name] [-f] [-p | --purge] [-k | --kill]
[-v] [--timeout hh:mm:ss]

Description
mps-stop [-C [path/]server_name] [-f] [-p | --purge] [-k | --kill]
[-v] [--timeout hh:mm:ss] closes HTTP server socket and all open client
connections immediately. All function requests that were executing when the command
was issued are allowed to complete before the server shuts down.

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance.

server_name

Name of the server to be stopped.

-f

Force success even if the server instance is not currently stopped. Stopping a stopped
instance is considered an error.

-p | --purge

Removes working files in the instance directory. These files are usually removed during a
graceful shutdown.

 mps-stop

7-27

-k | --kill

Immediately and forcibly terminate any running processes for this instance. Use this
option if a graceful shutdown has failed.

-v

Displays system messages relating to termination of server instance.

--timeout hh:mm:ss

Set a limit on how long mps-stop will run before returning either success or failure. For
example, specifying --timeout 00:02:00 indicates that mps-stop should exit with an
error status if the server takes longer than two (2) minutes to shut down. The instance
continues to attempt to terminate even if mps-stop times out. If this option is not
specified, the default behavior is to wait as long as necessary (infinity) for the instance to
stop.

Examples
Stop server instance server_1, located in tmp folder. Force successful completion of
mps-stop. Timeout with an error status if mps-stop takes longer than three (3) minutes
to complete.

In this example, the verbose (-v) option is specified, which produces an output status
message.

mps-stop -f -v -C /tmp/server_1 --timeout 00:03:00

Example Output
waiting for stop... (timeout = 00:03:00)

Tips
• After issuing mps-stop, issue the mps-status command to verify the server instance

has STOPPED.
• If you are stopping a server instance in the current working folder, you do not need to

specify a full path. Only specify the server name.

7 Commands — Alphabetical List

7-28

• Note that the timeout option (--timeout hh:mm:ss) is specified with two (2) dashes,
not one dash.

See Also
mps-new | mps-restart | mps-start | mps-status

Introduced in R2012b

 mps-stop

7-29

mps-support-info
Display licensing and configuration information of a MATLAB Production Server instance

Syntax
mps-support-info [-C [path/]server_name]

Description
mps-support-info displays licensing and configuration information of a MATLAB
Production Server instance.

Input Arguments
• path — The path to where the server instance is installed.
• server_name — The name of the server instance to locate in the current folder.

Examples
Display licensing and configuration information of server instance fred, residing in /
folder.

mps-support-info -C /fred

Instance Version: 1.0
License Number: UNKNOWN -- MPS stopped
MPS Version: UNKNOWN -- MPS stopped
Available License Number: 857812
Client Version: 1.0.1 R2013a
Operating System: Microsoft Windows 7 Enterprise Edition (build 7601), 64-bit
Number of CPU cores: 8
CPU Info: Intel(R) Xeon(R) CPU W3550 @ 3.07GHz 64-bit Compatible
Memory: 11.9915 GB (1.2574e+007 KB)

Introduced in R2012b

7 Commands — Alphabetical List

7-30

mps-which
Display path to server instance that is currently using the configured port

Syntax
mps-which [-C [path/]server_name]

Description
mps-which [-C [path/]server_name] is useful when running multiple server
instances on the same machine. If you attempt to start two server instance on the same
port, the latter server instance will fail to start, displaying an address-in-use error.
mps-which identifies which server instance is using the port.

Input Arguments
-C path/

Specify a path to the server instance. If this option is omitted, the current working folder
and its parents are searched to find the server instance.

server_name

Server to be queried for path.

Examples
server_1 and server_2, both residing in folder tmp, are configured to use to same
port, defined by the http configuration property.

Run mps-which for both servers:

mps-which -C /tmp/server_1

 mps-which

7-31

mps-which -C /tmp/server_2

Example Output
In both cases, the server that has allocated the configured port displays (server_1):

/tmp/server_1

Tips
• If you are creating a server instance in the current working folder, you do not need to

specify a full path. Only specify the server name.

See Also
mps-status

Introduced in R2012b

7 Commands — Alphabetical List

7-32

mps-cache
Control persistence service

Syntax
mps-cache [operation] [-C server_path] [--connection
connection_name] [--configFile provider_config_file_path] [--key
cache_access_key_string] [--timeout seconds] [--verbose | -v] [--
help |-h]

Description
mps-cache [operation] [-C server_path] [--connection
connection_name] [--configFile provider_config_file_path] [--key
cache_access_key_string] [--timeout seconds] [--verbose | -v] [--
help |-h] controls the persistence service based on the specified operation. The
supported operations are start, stop, restart, ping, attach, and detach.

The option connection_name is obtained from the JSON file mps_cache_config. This
file must be created by an administrator and placed in the config folder of the server
instance. The JSON structure of the mps_cache_config file is:

{
 "Connections": {
 "<connection_name>": {
 "Provider": "Redis",
 "Host": "<hostname>",
 "Port": <port_number>
 }
 }
}

<connection_name>, <host_name> and <port_number> are the only fields that can
be set by the administrator and <port_number> has to be a non-SSL port. Currently,
Redis™ is the only supported persistence service provider. You can have multiple
connections to the persistence provider.

 mps-cache

7-33

Input Arguments
operation

start | stop | restart | ping | attach | detach

• start — Start a persistence service.
• stop — Stop a persistence service.
• restart — Restart a persistence service.
• ping — Test whether the persistence service is reachable.
• attach — Connect persistence service to server instance process.
• detach — Disconnect persistence service from server instance process.

Note You cannot start, stop, or restart a remote persistence service.

-C server_path

Path to the server instance.

--connection connection_name

Name of connection to persistence service.

--configFile provider_config_file_path

Path to the persistence provider configuration file.

--key cache_access_key_string

Access key string to connect to an Azure Redis Cache instance obtained from the Azure
portal. For an example, see “Ping a Remote Persistence Service” on page 7-35.

--timeout ss

Set a limit on how long mps-cache will run before returning either success or failure.
The default duration is 30 seconds. For example, specifying --timeout 15 indicates that
mps-cache should exit with an error status if it takes longer than 15 seconds to access
the service.

7 Commands — Alphabetical List

7-34

--verbose | -v

Displays system messages relating to controlling the persistence service.

--help | -h

Displays options for using the mps-cache command.

Examples

Start a Persistence Service
Start a persistence service on Windows assuming a connection name myConnection has
been defined in the file mps_cache_config.
mps-cache start -C "h:\server\mps_instance" --connection myRedisConnection
mps-cache ping -C "h:\server\mps_instance" --connection myRedisConnection

Sending ping to Redis on localhost:9710.
Redis service running on localhost:9710.

The corresponding mps_cache_config file for the example is:

{
 "Connections": {
 "myRedisConnection": {
 "Provider": "Redis",
 "Host": "localhost",
 "Port": 9710
 }
 }
}

Ping a Remote Persistence Service
Assuming an Azure Redis Cache instance has been setup in the Azure portal and a
connection name myRemoteAzureRedisCacheConnection has been defined in the file
mps_cache_config.

mps-cache ping -C "h:\server\mps_instance"
 --connection myRemoteAzureRedisCacheConnection
 --key +WcI8pU0YodDMsw1LLC7gInkjtrjamLBRoq9rQQdMTU=

 mps-cache

7-35

Sending ping to Redis on azure.redis.cache.windows.net:6379.
Redis service running on azure.redis.cache.windows.net:6379.

The corresponding mps_cache_config file for the example is:

{
 "Connections": {
 "myRedisConnection": {
 "Provider": "Redis",
 "Host": "localhost",
 "Port": 9710
 },
 "myRemoteAzureRedisCacheConnection": {
 "Provider": "Redis",
 "Host": "azure.redis.cache.windows.net",
 "Port": 6379
 }
 }
}

Tips
• To retrieve an access key to connect to an Azure Redis Cache instance:

• Log in to your Azure portal and select your Azure Redis Cache instance.
• Select Overview and under Keys click Show access keys.
• In the resulting blade, copy the access key string listed under Primary.

7 Commands — Alphabetical List

7-36

See Also

Topics
“Use a Data Cache to Persist Data”

Introduced in R2018b

 mps-cache

7-37

Configuration Properties—
Alphabetical List

8

access-control-provider
Identity management service provider name

Syntax
--access-control-provider provider

Description
--access-control-provider provider enables access control by identity provider.

ssl-allowed-clients and --access-control-provider are incompatible flags,
and only one of them can be enabled. If both are enabled, MATLAB Production Server
fails to start.

Parameters
provider specifies the identity provider that is used by the MATLAB Production Server
instance for access control. Supported values for provider include: AzureAD.

Examples
Enable Access Control Using Azure Active Directory

--access-control-provider AzureAD

See Also
access-control-config | access-control-policy

Introduced in R2018b

8 Configuration Properties— Alphabetical List

8-2

access-control-config
Path to the identity management service provider configuration file

Syntax
--access-control-config path

Description
--access-control-config path specifies the path to the identity provider specific
configuration file. This syntax is optional. The default path for AzureAD is ./config/
azure_ad.json. If access control is enabled by specifying access-control-provider, the
access control configuration file must exist in path, otherwise MATLAB Production
Server fails to start.

Parameters
path specifies the path to access the configuration file.

Examples
Specify Path to AzureAD.

--access-control-config ./config/azure_ad.json

See Also
access-control-policy | access-control-provider

Topics
“Access Control Configuration File” on page 3-11

 access-control-config

8-3

Introduced in R2018b

8 Configuration Properties— Alphabetical List

8-4

access-control-policy
Path to the access control policy file

Syntax
--access-control-policy path

Description
--access-control-policy path specifies the path to the access control policy file.
This syntax is optional. The default path is ./config/ac_policy.json. If access control is
enabled by specifying access-control-provider, the access control policy file must exist in
path, otherwise MATLAB Production Server fails to start.

Once the server has started, the policy file is scanned every five seconds for changes. If
the policy file is deleted or contains errors, the server continues to run, but all requests
are denied. An error message is written to the main.log file.

Parameters
path specifies the path to access the policy file.

Examples
Specify Path to the JSON Access Control Policy File.

--access-control-policy ./config/ac_policy.json

See Also
access-control-config | access-control-provider

 access-control-policy

8-5

Topics
“Access Control Policy File” on page 3-12

Introduced in R2018b

8 Configuration Properties— Alphabetical List

8-6

auto-deploy-root
Folder the server instance scans for deployable archives

Syntax
--auto-deploy-root path

Description
--auto-deploy-root path specifies the folder the server instance scans for
deployable archives. Deployable archives placed in this folder are automatically unpacked
and deployed when the instance is started. No restart is necessary when a deployable
archive is added, updated, or removed. Many instances may share a single auto-
deploy-root. Using this folder allows near-simultaneous hot deployment to multiple
instances. The folder is scanned every five seconds for changes.

Parameters
path

Path to the folder scanned for deployable archives relative to the server instance's
root folder.

Examples
Scan the auto_deploy folder for deployable archives to hot deploy.

--auto-deploy-root ./auto_deploy

 auto-deploy-root

8-7

client-credential-delegation
Client credential delegation method name

Syntax
--client-credential-delegation method

Description
--client-credential-delegation method specifies the client credential delegation
method that the server uses. Currently, kerberos-without-protocol-transition is
the only supported method. If you set client-credential-delegation to kerberos-
without-protocol-transition, then you must set http-authentication-method to
spnego; otherwise, the server fails to start.

Parameters
method

Name of the client credential delegation method. kerberos-without-protocol-
transition is the only supported method.

Examples
Use kerberos-without-protocol-transition as the client credential delegation
method.

--client-credential-delegation kerberos-without-protocol-transition

See Also
http-authentication-method

8 Configuration Properties— Alphabetical List

8-8

Topics
“Use Kerberos and Kerberos Delegation” on page 3-18

Introduced in R2019b

 client-credential-delegation

8-9

cors-allowed-origins
Specify the domain origins from which clients are allowed to make requests to the server

Syntax
--cors-allowed-origins [LIST | *]

Description
cors-allowed-origins specifies the set of domain origins from which clients are
allowed to make requests to a MATLAB Production Server instance. Cross-Origin
Resource Sharing or CORS defines a way in which client-side web applications and a
server can interact to safely determine whether or not to allow a cross-origin request.
Most clients such as browsers use the XMLHttpRequest object to make a cross-domain
request. This is especially true for client code written using JavaScript®. For MATLAB
Production Server to support such requests, you must enable cors-allowed-origins
on the server.

Parameters
*

Requests from any domain origin are allowed access to the sever.
LIST

Requests from a list of comma-separated domain origins are allowed access to the
server.

Examples
Requests from any domain origin are allowed access to the sever.

--cors-allowed-origins *

Requests from a specific list of domain origins are allowed access to the server.

8 Configuration Properties— Alphabetical List

8-10

--cors-allowed-origins http://www.w3.org, https://www.apache.org

See Also
http

 cors-allowed-origins

8-11

disable-control-c
Disable keyboard interruptions for server instance

Syntax
--disbable-control-c

Description
disable-control-c disables keyboard interruption for the server instance. The server
instance does not respond to CTRL-C.

Examples
Disable the CTRL-C button.

--disable-control-c

8 Configuration Properties— Alphabetical List

8-12

endpoint-root
Folder used to store server named endpoints

Syntax
--endpoint-root path

Description
--endpoint-root path specifies the location for storing server named endpoints. Each
interface used to communicate with the outside world generates an endpoint file in this
folder. Normally that means:

• http - The HTTP function execution interface.
• control - The local control interface used by the scripting commands.

These files contain the host:post portion of the URL used to communicate with the
named service.

Note While modifying this location is allowed, each instance must have a unique
endpoint directory; otherwise behavior is undefined.

Parameters
path

Path to the folder used to store endpoint files relative to the server instance's root
folder.

Examples
Store endpoint files in the endpt folder.

 endpoint-root

8-13

--endpoint-root ./endpt

8 Configuration Properties— Alphabetical List

8-14

extract-root
Root folder used to store contents of deployed archives

Syntax
--extract-root path

Description
--extract-root path specifies the root folder used to store the expanded contents of
the deployable archives deployed on the server instance. Deployable archives are
unpacked to a hidden subdirectory of extract-root.

Parameters
path

Path to the root folder used to store contents of deployable archives relative to the
server instance's root folder.

Examples
Extract deployable archives into the archives folder.

--extract-root ./archives

 extract-root

8-15

hide-matlab-error-stack
Hide the MATLAB stack from the clients

Syntax
--hide-matlab-error-stack

Description
hide-matlab-error-stack controls whether the MATLAB stack is exposed to the
client. The stack can be sent to the client during development and debug phase, but can
be turned off in production.

Examples
Do not transmit the error stack to clients.

--hide-matlab-error-stack

8 Configuration Properties— Alphabetical List

8-16

http
URL for insecure connections

Syntax
--http host:port

Description
http specifies the interface port and optional address or host name.

Parameters
host

Host name or IP address of the machine running the server instance. If you do not
specify the host, the server binds to any available interface.

port
Port number used by the server instance to accept connections. Bind to any available
port by specifying 0.

Examples
Restrict access to the HTTP interface for local clients only on port 9910.

--http localhost:9910

Bind to any free port. The bound address is written to $INSTANCE/endpoint/https.

--http 0

Bind to a specific IP address and port.

--http 234.27.101.3:9920

 http

8-17

Bind to a specific host name on any free port

--http my.hostname.com:0

8 Configuration Properties— Alphabetical List

8-18

http-authentication-method
HTTP authentication method name

Syntax
--http-authentication-method method

Description
--http-authentication-method method specifies the HTTP authentication method
that the server uses to authenticate the client.

If you do not specify this property, the server does not perform HTTP authentication. You
can still authenticate using an HTTPS client certificate. For more information on
configuring client authentication, see “Configure Client Authentication” on page 3-5.

Parameters
method

Name of HTTP authentication method. spnego (Simple and Protected Negotiation
Mechanism) is the only supported method.

Examples
Specify spnego as the HTTP authentication method.

--http-authentication-method spnego

See Also
client-credential-delegation

 http-authentication-method

8-19

Topics
“Use Kerberos and Kerberos Delegation” on page 3-18

Introduced in R2019b

8 Configuration Properties— Alphabetical List

8-20

http-linger-threshold
Amount of data the server instance discards after an HTTP error and before the server
instance closes the TCP connection

Syntax
--http-linger-threshold size

Description
http-linger-threshold sets the amount of data a server instance reads after an error.
If an HTTP request is rejected and the server instance sends back an HTTP error
response such as HTTP 404/413, the server instance does not close the TCP connection
immediately. Instead it waits for the client to shut down the TCP connection. This ensures
that the client receives the HTTP error response sent by the server instance. During this
time, the server instance receives, and discards, data from the client, until the amount of
data received equals http-linger-threshold. After that, the server instance resets
the TCP connection.

By default, the threshold is unlimited and the server instance waits to receive the whole
HTTP request.

Parameters
size

Amount of data received before the TCP connection is reset.

Examples
Set the linger threshold to be 64 MB.

--http-linger-threshold 64MB

 http-linger-threshold

8-21

Set the linger threshold to be 32 KB.

--http-linger-threshold 32KB

Set the linger threshold to be 1024 B.

--http-linger-threshold 1024

8 Configuration Properties— Alphabetical List

8-22

https
URL for secure connections

Syntax
--https host:port

Description
https specifies the interface port and the optional address or host name to use for
secure client-server communication.

Starting in R2019b, if you set the https property, you must set the x509-private-key and
x509-cert-chain properties; otherwise, the server fails to start.

Parameters
host

Host name or IP address of the machine running the server instance. If you do not
specify the host, the server binds to any available interface.

port
Port number used by the server instance to accept connections. Bind to any available
port by specifying 0.

Examples
Restrict access to the HTTPS interface for local clients only on port 9920.

--https localhost:9920

Bind to any free port. The bound address is written to $INSTANCE/endpoint/https.

--https 0

 https

8-23

Bind to a specific IP address and port.

--https 234.27.101.3:9920

Bind to a specific host name on any free port.

--https my.hostname.com:0

See Also
x509-cert-chain | x509-private-key

Topics
“Enable HTTPS” on page 3-3

8 Configuration Properties— Alphabetical List

8-24

license
Locations searched for valid licenses

Syntax
--license pathList

Description
license specifies the license servers or the license files used by the server instance. You
can specify multiple license sources with this option.

If this option is not specified, the server searches in the default locations for the license
files.

Parameters
pathList

Path to one or more license servers or license files. Multiple entries are separated by
the appropriate path separator for the platform.

Examples
A Unix server looks for licenses using a license server hosted on port 27000 of hostA and
in /opt/license/license.dat.

--license 27000@hostA
--license /opt/license/license.dat

The same configuration in one line.

--license 27000@hostA:/opt/license/license.dat

 license

8-25

A Windows server looks for licenses using a license server hosted on port 27000 of hostA
and in c:\license\license.dat.

--license 27000@hostA
--license c:\license\license.dat

The same configuration in one line.

--license 27000@hostA;c:\license\license.dat

8 Configuration Properties— Alphabetical List

8-26

license-grace-period
Maximum length of time the server instance responds to HTTP requests after license
server heartbeat has been lost

Syntax
--license-grace-period hr:min:sec.fractSec

Description
license-grace-period specifies the grace period, which starts at the first heartbeat
loss event. Once the grace period expires, the server instance rejects any new incoming
HTTP requests.

The default grace period is 2 hours 30 minutes. The maximum value is 2 hours 30
minutes. The minimum value is 10 minutes.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
The grace period lasts for 1 hour, 29 minutes, 5 seconds.

 license-grace-period

8-27

--license-grace-period 1:29:05

The grace period lasts for 10 minutes and 250 ms.

--license-grace-period 00:10:00.25

8 Configuration Properties— Alphabetical List

8-28

license-poll-interval
Interval of time before license server is polled to verify and check out a valid license after
the grace period expires

Syntax
--license-poll-interval hr:min:sec.fractSec

Description
license-poll-interval specifies interval at which the server instance polls the
license server after the license server has timed out or after the grace period has expired.

The default poll interval is 10 minutes. The minimum value is 10 minutes.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
Poll for licenses at intervals of 1 hour, 29 minutes, 5 seconds.

--license-poll-interval 1:29:05

 license-poll-interval

8-29

Poll for licenses at intervals of 10 minutes and 250 ms.

--license-poll-interval 00:10:00.25

8 Configuration Properties— Alphabetical List

8-30

log-archive-max-size
Maximum size of the log archive folder

Syntax
--log-archive-max-size size

Description
log-archive-max-size specifies the maximum size to which the log archive folder can
grow before old log files are deleted.

If this property is not specified, then the log archive grows without limit.

Parameters
size

Size, in bytes, of the archive folder.

Examples
Reap log archives when they reach 5 MB.

--log-archive-max-size 5MB

 log-archive-max-size

8-31

log-archive-root
Path to the folder containing archived log files

Syntax
--log-archive-root path

Description
--log-archive-root path specifies the path to directory that stores rotated log files.

Note If you omit this property, rotated logs remain in the log root directory, which grows
unbounded as logs are rotated.

Parameters
path

Path to the folder where log files are archived relative to the server instance's root
folder.

Examples
Archive logs to server_root/old_logs.

--log-archive-root ./old_logs

8 Configuration Properties— Alphabetical List

8-32

log-handler
Add custom log handler

Syntax
--log-handler format command

Description
--log-handler format command adds a log handler that writes log data to the
application specified by command in the format specified by format.

The server instance launches an instance of the log handler at startup. All log events are
sent to the STDIN stream of the log handler. The STDOUT and STDERR streams of the log
handler are captured and written to INSTANCE_ROOT/log/custom_logger_N.out and
INSTANCE_ROOT/log/custom_logger_N.err.

Parameters
format

Format used to write log events. Valid values are:

• text/plain
• text/json
• text/xml

command
Application launched to process log events.

Examples
Send log events to a custom JSON parser that prepares performance graphs.

 log-handler

8-33

--log-handler text/json perf_grapher

8 Configuration Properties— Alphabetical List

8-34

log-root
Path to the log file folder

Syntax
--log-root path

Description
--log-root path specifies the location for log files.

When a server instance starts, the following log files are created:

• main__DATE__SERIAL.log — The head process main log
• main.log — A link to the mostly recently written main log file
• main.out — Captured standard output from the main process
• main.err — Captured standard error output from the main process

When the server instance stops, the head process main log is moved to the log archive
folder.

Note Omitting this property disables all logging except for stdout and stderr capture
of main.

Parameters
path

Path to the folder where log files are stored relative to the root folder of the server
instance.

 log-root

8-35

Examples
Archive logs to server_root/logs.

--log-root ./logs

8 Configuration Properties— Alphabetical List

8-36

log-rotation-size
Size at which the log is archived

Syntax
--log-rotation-size size

Description
log-rotation-size specifies the maximum size to which the log can grow before it is
rotated into the archive area. If specified as less than 1 MB, a warning is issued and the
effective size is increased to 1 MB.

No entry signifies that logs are never archived.

Parameters
size

Size, in bytes, of the log file.

Examples
Rotate logs when they reach 5 MB.

--log-rotation-size 5MB

 log-rotation-size

8-37

log-severity
Severity at which messages are logged

Syntax
--log-severity level

Description
log-severity specifies the level of detail at which to add information to the main log.

Parameters
level

Severity threshold at which messages are logged. Valid values are:

• error — Notification of problems or unexpected results.
• warning — Events that could lead to problems if not addressed.
• information — High-level information about major server events.
• trace — Detailed information about the internal state of the server.

The levels are cumulative; specifying information implies warning and error.

Examples
Enable all log messages.

--log-severity trace

8 Configuration Properties— Alphabetical List

8-38

mcr-root
Location of a MATLAB Runtime installation

Syntax
--mcr-root path

Description
mcr-root specifies the location of an installed MATLAB Runtime instance. If multiple
MATLAB Runtime installations are available, then specify each installation on a separate
line.

Note Specifying multiple MATLAB Runtime installations allows one MATLAB Production
Server instance to support multiple versions of the MATLAB Runtime. Specifying multiple
MATLAB Runtime installations of the same version has no effect on performance.

If multiple mcr-root settings are present, then the server uses dynamic worker pool
management, where worker processes are started in response to demand and shut down
in response to system resource utilization.

The server instance scans the list of provided MATLAB Runtime installations in order
from first to last and chooses the first MATLAB Runtime installation capable of processing
the request. A MATLAB Runtime installation can process a request if it is compatible with
the deployable archive containing the function being evaluated.

Note

• A server instance should only be configured to use MATLAB Runtime roots on a local
file system. Otherwise, a network partition may cause worker processes to fail.

• All values for mcr-root must be for the same OS/hardware combination.

 mcr-root

8-39

Parameters
path

Path to the root folder of the MATLAB Runtime installation.

Note The special value mCRuNsETtOKEN indicates to the mps-start command that
there is no MATLAB Runtime installation configured for this instance. Running the
mps-start command results in an error.

Examples
Use the v80 version of the MATLAB Runtime.

--mcr-root /usr/local/MCR/v80

Use the v80 and v81 versions of the MATLAB Runtime.

--mcr-root /usr/local/MCR/v80
--mcr-root /usr/local/MCR/v81

See Also

Topics
“Specify the MATLAB Runtime for a Server Instance” on page 1-11
“Support Multiple MATLAB Versions” on page 1-15

8 Configuration Properties— Alphabetical List

8-40

num-threads
Number of request-processing threads within the server instance

Syntax
--num-threads count

Description
num-threads sets the size of the thread pool available to process requests. Server
instances do not allocate a unique thread to each client connection. Rather, when data is
available on a connection, the required processing is scheduled on the pool of threads in
the server main process.

The threads in this pool do not directly evaluate MATLAB functions. There is a single
thread within each worker process that executes MATLAB code on behalf of the client.

Set this parameter to 1, and increase it only if the expected load consists of a high volume
of short-running requests. This strategy ensures that the available processor resources
are balanced between MATLAB function evaluation and processing client-server requests.
There is usually no benefit to increasing this parameter to more than the number of
available cores.

Parameters
count

Number of threads available in the thread pool.

This value must be one or greater.

Examples
Create a pool of 10 threads for processing requests.

 num-threads

8-41

--num-threads 10

See Also
request-size-limit

8 Configuration Properties— Alphabetical List

8-42

num-workers
Maximum number of workers allowed to process work simultaneously

Syntax
--num-workers count

Description
num-workers defines the number of concurrent MATLAB execution requests that can be
processed simultaneously. It should correspond to the number of hardware threads
available on the local host.

If you specify a single value for the mcr-root property, this setting determines the fixed
size of the worker pool.

If you specify more than one value for the mcr-root, this setting specifies a maximum
limit on the size of each subpool specific to MATLAB Runtime. There can be more than
specified number of worker processes at a time, but at a maximum only the specified
number of workers are allowed to be processing a request.

Parameters
count

Number of workers available evaluate functions.

This value must be one or greater.

The maximum value is determined by the number of license keys available for
MATLAB Production Server.

 num-workers

8-43

Examples
Allow 10 workers to process requests at a time.

--num-workers 10

8 Configuration Properties— Alphabetical List

8-44

pid-root
Folder used to store PID files

Syntax
--pid-root path

Description
--pid-root path specifies the folder used to store PID files. PID files record the
system-specific process identifiers for all processes associated with the server instance.
This includes:

• main.pid — The process identifiers of the server's head process.
• worker_N.pid — The process identifiers of each worker process N.

In some circumstances, worker_2.pid may be present when worker_1.pid is not. This
is a strong indication that worker_1 crashed and was restarted automatically. You can
confirm this by checking the main log file.

The format of these files is a single decimal integer, the process identifier.

Parameters
path

Path to the folder used to store PID files relative to the server instance's root folder.

Examples
Store PID files in the pid folder.

--pid-root ./pid

 pid-root

8-45

profile
Turn profiling on or off

Syntax
--profile state object

Description
profile turns profiling on or off for different objects.

Note Activating profiling has a negative impact on performance.

In some circumstances, worker_2.pid may be present when worker_1.pid is not. This
is a strong indication that worker_1 stopped and was restarted automatically. You can
confirm this by checking the main log file.

When profiling is activated, messages similar to the following are included in the log.

12 [2014.02.27 10:13:28.075126] [profile] [SERVICE:http-connection]
[endpoint:[::]:9910] [client:163.72.158.2:57611] [request-id:0:1:5]
[type:arrive] [component:mymagic] [function:magic]
Request arrived and was placed in the queue
13 [2014.02.27 10:13:28.087752] [profile] [SERVICE:http-connection]
[endpoint:[::]:9910] [client:163.72.158.2:57611] [request-id:0:1:5]
[type:start] [worker:3] Request started executing on worker-3
...
15 [2014.02.27 10:13:31.397266] [profile] [SERVICE:http-connection]
[endpoint:[::]:9910] [client:163.72.158.2:57611] [request-id:0:1:5]
[type:finish] [status:200] Request completed with HTTP status 200

8 Configuration Properties— Alphabetical List

8-46

Parameters
state

Specifies if profiling is active. Valid values are:

• on — Activate profiling.
• off — Activate profiling.

object
The list of objects to change. Supported objects are:

• requests
• worker_pool

If no object is specified, all objects are changed.

Examples
Turn on request profiling.

--profile on requests

Turn on profiling for all objects.

--profile on

 profile

8-47

request-size-limit
Set the maximum size of a request

Syntax
--request-size-limit size

Description
request-size-limit specifies the maximum size of a request specified by size. The
default request size is 64MB.

Parameters
size

Size, in bytes, of the request.

Examples
Set the request size to 128MB.

--request-size-limit 128MB

See Also
num-threads

8 Configuration Properties— Alphabetical List

8-48

ssl-allowed-client
MATLAB programs a client can access

Syntax
--ssl-allowed-client client1,...,clientN:archive1,...,archiveN

Description
ssl-allowed-client authorizes clients based on the client certificate common name.
Only authorized clients can request the evaluation of MATLAB functions.

If there are no archive names following the common name, the client can access all of the
deployed archives. Otherwise, the client can access only the specified archives.

Parameters
client

Common name of the client.
archive

Name of an archive the clients can access.

Examples
Allow client1 and client2 to access magic.ctf and helloworld.ctf. Allow
client3 access to all deployed archives.

--ssl-allowed-client client1,client2:magic,helloworld
--ssl-allowed-client client3

 ssl-allowed-client

8-49

ssl-ciphers
List of cipher suites used for encryption

Syntax
--ssl-ciphers ciphers

Description
ssl-ciphers provides a list of cipher suites that the server uses for encryption.

Parameters
ciphers

Cipher suites the server instance uses for encryption. Valid values are:

• ALL — Use all available cipher suites except eNULL.
• HIGH — Use all available high encryption cipher suites.
• list — Comma-separated list of cipher suites to use.

All OpenSSL configuration strings can be passed with the ciphers. This provides finer
control over the selected cipher.

Examples
Use only high encryption cipher suites.

--ssl-ciphers HIGH

Disable the use of ADH ciphers.

--ssl-ciphers ALL:!ADH

Use the strongest available ECDHE ciphers.

8 Configuration Properties— Alphabetical List

8-50

--ssl-ciphers ALL:@STRENGTH

Disable the use of ADH ciphers and use the strongest available ECDHE ciphers.

--ssl-ciphers ALL:!ADH@STRENGTH

See Also
https | ssl-protocols

Topics
“Enable HTTPS” on page 3-3
“Adjust Security Protocols” on page 3-9

 ssl-ciphers

8-51

ssl-protocols
List of allowed SSL protocols

Syntax
--ssl-protocols protocols

Description
ssl-protocols lists the allowed SSL protocols. If you do not set this property, the
server allows the use of all supported SSL protocols. Supported protocols are TLSv1,
TLSv1.1, and TLSv1.2. The default server behavior is to attempt to use TLSv1.2.

Starting in R2019b, SSLv3 is no longer supported.

Parameters
protocols

Comma-separated list of allowed protocols. Valid entries are:

• TLSv1
• TLSv1.1
• TLSv1.2

Examples
Allow only TLSv1.

--ssl-protocols TLSv1

8 Configuration Properties— Alphabetical List

8-52

See Also
https | ssl-ciphers

Topics
“Enable HTTPS” on page 3-3
“Adjust Security Protocols” on page 3-9

 ssl-protocols

8-53

ssl-tmp-ec-param
Elliptic curve used for the ECDHE ciphers

Syntax
--ssl-tmp-ec-param elliptic_curve_name

Description
--ssl-tmp-ec-param elliptic_curve_name specifies the name of the elliptic curve
used for the ECDHE ciphers.

Starting in R2019b, ECDHE ciphers are enabled by default. If you do not specify the
elliptic curve name, ECDHE ciphers use a default elliptic curve. The default elliptic curves
are in the following order: x25519, secp256r1, x448, secp521r1, secp384r1. During the
SSL/TLS handshake, the client advertises the curves that it supports. Based on this client-
server negotiation, one of the default curves is used to establish a secure connection for
the subsequent data exchange.

For earlier releases, if this property is not specified, all ECDHE ciphers are disabled.

Parameters
elliptic_curve_name

Name of curve. All curves supported by OpenSSL are supported.

Examples
Use the prime256v1 curve.

--ssl-tmp-ec-param prime256v1

8 Configuration Properties— Alphabetical List

8-54

ssl-tmp-dh-param
File containing a pregenerated ephemeral DH key

Syntax
--ssl-tmp-dh-param path

Description
ssl-tmp-dh-param specifies the path to the pre-generated ephemeral DH key. If this
parameter is not provided, the server instance automatically generates the DH key at
start-up. Providing a pre-generated DH key can decrease instance start time.

Parameters
path

Path to the pre-generated DH key. Relative and absolute paths are valid.

Examples
The instance loads the DH key from dh_param.pem which is located at
instance_root/x509.

--ssl-tmp-dh-param ./x509/dh_param.pem

 ssl-tmp-dh-param

8-55

ssl-verify-peer-mode
Level of client verification required by the server instance

Syntax
--ssl-verify-peer-mode mode

Description
ssl-verify-peer-mode specifies whether the server requires clients to present a valid
certificate to connect to it. Server instances allow clients to connect to it with or without
providing a valid certificate. All requests will still require authorization.

If you set ssl-verify-peer-mode to verify-peer-require-peer-cert, you must
set either the x509-ca-file-store or x509-use-system-store property.

Parameters
mode

Mode used to authenticate clients. Valid values are:

• no-verify-peer — No peer certificate verification. The client side does not need
to provide a certificate.

• verify-peer-require-peer-cert — The client must provide a certificate and
the certificate will be verified.

The default is no-verify-peer.

Examples
Require clients to provide a certificate.

--ssl-verify-peer-mode verify-peer-require-peer-cert

8 Configuration Properties— Alphabetical List

8-56

See Also
https | x509-ca-file-store | x509-use-crl | x509-use-system-store

Topics
“Configure Client Authentication” on page 3-5

 ssl-verify-peer-mode

8-57

use-single-comp-thread
Start MATLAB Runtime with a single computational thread

Syntax
--use-single-comp-thread

Description
--use-single-comp-thread specifies that workers start the MATLAB Runtime with a
single computational thread.

Examples
Start the MATLAB Runtime with a single computational thread.

--use-single-comp-thread

8 Configuration Properties— Alphabetical List

8-58

worker-memory-check-interval
Interval at which workers are polled for memory usage

Syntax
--worker-memory-check-interval hr:min:sec.fractSec

Description
worker-memory-check-interval specifies how often to poll the memory usage of a
worker process. This setting affects the behavior of all other settings that act based on
worker memory usage such as worker-memory-trigger, worker-memory-target,
and worker-restart-memory-limit.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
Check memory usage every one and a half minutes.

--worker-memory-check-interval 0:01:30

 worker-memory-check-interval

8-59

See Also
worker-restart-memory-limit | worker-restart-memory-limit-interval

Topics
“Control Worker Restarts” on page 1-17

8 Configuration Properties— Alphabetical List

8-60

worker-restart-interval
Time interval at which a server instance stops and restarts its workers

Syntax
--worker-restart-interval hr:min:sec.fractSec

Description
worker-restart-interval specifies the interval at which the server instance stops
and restarts its worker processes. If this setting is not given, the workers are not
restarted in response to time.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
Restart workers at intervals of 1 hour, 29 minutes, 5 seconds.

--worker-restart-interval 1:29:05

Restart workers at intervals of 10 minutes and 250 ms.

 worker-restart-interval

8-61

--worker-restart-interval 00:10:00.25

See Also

Topics
“Control Worker Restarts” on page 1-17

8 Configuration Properties— Alphabetical List

8-62

worker-restart-memory-limit
Size threshold at which to consider restarting a worker

Syntax
--worker-restart-memory-limit size

Description
worker-restart-memory-limit sets the memory usage limit of a worker process. If a
worker's working set size exceeds worker-restart-memory-limit for an interval of
time greater than worker-restart-memory-limit-interval, then that worker is
restarted.

Parameters
size

Amount of memory used by worker.

Examples
Restart any worker whose working set size exceeds 1 GB for more than 1 hour.

--worker-restart-memory-limit 1GB
--worker-restart-memory-limit-interval 1:00:00

See Also
worker-memory-check-interval | worker-restart-memory-limit-interval

 worker-restart-memory-limit

8-63

Topics
“Control Worker Restarts” on page 1-17

8 Configuration Properties— Alphabetical List

8-64

worker-restart-memory-limit-interval
Interval for which a worker can exceed its memory limit before restart

Syntax
--worker-restart-memory-limit-interval hr:min:sec.fractSec

Description
worker-restart-memory-limit-interval sets the interval for which a worker
process can exceed its memory limit before restart. If a worker's working set size exceeds
worker-restart-memory-limit for an interval of time greater than worker-
restart-memory-limit-interval, then that worker is restarted.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
Restart any worker whose working set size exceeds 1 GB for more than 1 hour.

--worker-restart-memory-limit 1GB
--worker-restart-memory-limit-interval 1:00:00

 worker-restart-memory-limit-interval

8-65

See Also
worker-memory-check-interval | worker-restart-memory-limit

Topics
“Control Worker Restarts” on page 1-17

8 Configuration Properties— Alphabetical List

8-66

x509-ca-file-store
File containing the server certificate authority file

Syntax
--x509-ca-file-store path

Description
x509-ca-file-store specifies the certificate authority (CA) file to verify peer
certificates. This file contains trusted certificates and certificate revocation lists.

You can also put intermediate certificates into the CA file. An intermediate certificate in
the CA file becomes a trusted certificate.

Parameters
path

Path to the certificate CA file store. Relative and absolute paths are valid.

Examples
The instance loads the CA store from ca_file.pem which is located at
instance_root/x509.

--x509-ca-file-store ./x509/ca_file.pem

See Also
https | ssl-verify-peer-mode | x509-use-crl | x509-use-system-store

 x509-ca-file-store

8-67

Topics
“Configure Client Authentication” on page 3-5

8 Configuration Properties— Alphabetical List

8-68

x509-cert-chain
File containing the server certificate chain

Syntax
--x509-cert-chain path

Description
x509-cert-chain specifies the server certificate chain file. It contains one or more
PEM-format certificates. The chain begins with the server certificate. The server
certificate is followed by a chain of untrusted certificates. To use the certificate chain file,
specify the x509-private-key.

Starting in R2019b, if https is enabled on the server, you must set the x509-cert-chain
and x509-cert-chain properties; otherwise, the server fails to start.

Note Do not specify trusted certificates in the certificate chain file.

Parameters
path

Path to the certificate chain file. Relative and absolute paths are valid.

Examples
The instance loads the certificate chain from cert_chain.pem which is located at
instance_root/x509.

--x509-cert-chain ./x509/cert_chain.pem

 x509-cert-chain

8-69

See Also
https | x509-private-key

Topics
“Enable HTTPS” on page 3-3

8 Configuration Properties— Alphabetical List

8-70

x509-passphrase
File containing the passphrase that decodes the private key

Syntax
--x509-passphrase path

Description
x509-passphrase specifies the path to the file containing the passphrase of the
encrypted private-key. This is required if x509-private-key is specified and the private
key file is encrypted. Otherwise, the private key fails to load.

Note This file must be owner read-only.

Parameters
path

Path to the passphrase file. Relative and absolute paths are valid.

Examples
The instance loads the passphrase from key_passphrase.pem which is located at
instance_root/x509.

--x509-passphrase ./x509/key_passphrase.pem

 x509-passphrase

8-71

x509-private-key
File containing the private key in PEM format

Syntax
--x509-private-key path

Description
x509-private-key specifies the path to the private key. The key must be in PEM
format.

If you do not set this property, the server instance does not load the private key or the
server-side certificates.

Starting in R2019b, if https is enabled on the server, you must set the x509-private-
key and x509-cert-chain properties; otherwise, the server fails to start.

Parameters
path

Path to the PEM-format private key file. Relative and absolute paths are valid.

Examples
The instance loads the private key from private_key.pem, which is located at
instance_root/x509.

--x509-private-key ./x509/private_key.pem

See Also
https | x509-cert-chain

8 Configuration Properties— Alphabetical List

8-72

Topics
“Enable HTTPS” on page 3-3

 x509-private-key

8-73

x509-use-crl
Use the certificate revocation list

Syntax
--x509-use-crl

Description
x509-use-crl specifies that the server instance uses the certificate revocation list
(CRL). By default, instances do not use any CRLs. In this case, the CRLs in the certificate
authority store are ignored.

If x509-use-crl is added, the CRLs are loaded and participate in the client certificate
verification. If the CRL has expired, the SSL handshake is rejected.

Examples
The instance uses certificate revocation list when authenticating clients.

--x509-use-crl

See Also
https | ssl-verify-peer-mode | x509-ca-file-store | x509-use-system-store

Topics
“Configure Client Authentication” on page 3-5

8 Configuration Properties— Alphabetical List

8-74

x509-use-system-store
Use the certificate authority store provided by the system

Syntax
--x509-use-system-store

Description
x509-use-system-store specifies that the server instance uses the system provided
certificate authority (CA) store. By default, the server uses the file /etc/ssl/
certs/ca-certificates.crt as trusted CA store and searches for trusted certificates
under the folder /etc/ssl/certs. You can override these locations by setting the
environment variables SSL_CERT_FILE and SSL_CERT_DIR.

Examples
The instance uses the system CA store.

--x509-use-system-store

See Also
https | ssl-verify-peer-mode | x509-ca-file-store | x509-use-crl

Topics
“Configure Client Authentication” on page 3-5

 x509-use-system-store

8-75

request-timeout
Duration after which the request times out and gets deleted after reaching a terminal
state

Syntax
--request-timeout hr:min:sec.fractSec

Description
request-timeout specifies the duration after which the request times out upon
reaching a terminal state. At this point, the request gets deleted unless a client process
has already deleted the request.

Parameters
hr

Hours in interval.
min

Minutes in interval.
sec

Seconds in interval.
fractSec

Fractional seconds in interval.

Examples
Set the request to time-out after 2 hours.

--request-timeout 2:00:00

8 Configuration Properties— Alphabetical List

8-76

See Also
server-memory-threshold

Introduced in R2016b

 request-timeout

8-77

server-memory-threshold
Size threshold of server process at which action needs to be taken to manage responses

Syntax
--server-memory-threshold SIZE

Description
server-memory-threshold sets the memory size limit of a server process. If a server
process’s size exceeds SIZE set by server-memory-threshold, then responses need to
be either archived or purged by setting server-memory-threshold-overflow-
action to archive_responses or purge_responses respectively. If server-
memory-threshold is not set, then the responses will be bound to the server process
causing the memory footprint of the server process to keep increasing. As a best practice,
it is recommended that a client process delete a request after usage in order to prevent
the memory of the server process from growing.

Parameters
size

Threshold size of the server process.

Examples
Archive responses if the size of the server process in memory exceeds 500 MB.

--server-memory-threshold 500MB
--server-memory-threshold-overflow-action archive_responses

Purge responses if the size of the server process in memory exceeds 2 GB.

--server-memory-threshold 2GB
--server-memory-threshold-overflow-action purge_responses

8 Configuration Properties— Alphabetical List

8-78

See Also
server-memory-threshold-overflow-action

 server-memory-threshold

8-79

server-memory-threshold-overflow-action
Action taken when the memory size threshold of server process is breached

Syntax
--server-memory-threshold-overflow-action ACTION

Description
server-memory-threshold-overflow-action acts by either archiving responses or
purging them when the size of the server process in memory set by server-memory-
threshold is breached.

Parameters
ACTION

archive_responses

purge_responses

Examples
Archive responses if the size of the server process in memory exceeds 500 MB.

--server-memory-threshold 500MB
--server-memory-threshold-overflow-action archive_responses

Purge responses if the size of the server process in memory exceeds 2 GB.

--server-memory-threshold 2GB
--server-memory-threshold-overflow-action purge_responses

8 Configuration Properties— Alphabetical List

8-80

See Also
server-memory-threshold

 server-memory-threshold-overflow-action

8-81

response-archive-root
Path to the location where responses are archived

Syntax
--response-archive-root PATH

Description
response-archive-root shows the location where responses specified by PATH are
archived. This option must be set if the server-memory-threshold-overflow-action option is
set to archive_responses. The server process must have read & write permissions to
the PATH.

Parameters
PATH

Location specified as a string.

Examples
Set the archive root.

--response-archive-root ./.response_archive

See Also
response-archive-limit

8 Configuration Properties— Alphabetical List

8-82

response-archive-limit
Maximum disk space available to the server process for archiving

Syntax
--response-archive-limit SIZE

Description
response-archive-limit specifies the maximum disk space available to the server
process for archiving. If the limit set by SIZE is reached, the archives will be deleted in a
'First-In First-Out' order until the space for the server process fall below SIZE. If this
limit is not specified, the server process will assume there is no limit to disk usage for
archiving.

Parameters
size

Size of the server process.

Examples
Set the size of the archive to be 5GB

--response-archive-limit 5GB

See Also
response-archive-root

Introduced in R2016b

 response-archive-limit

8-83

user-data
Associate MATLAB data value with string key

Syntax
--user-data KEY VALUE

Description
user-data associates MATLAB data value with key string. KEY and VALUE are strings.
Use the double quotes (") character around strings with spaces. The backslash (\)
character is the escape character and is used to insert double quotes or backslash
characters: \" \\. The application can retrieve the data value by using
getmcruserdata(key).

Parameters
KEY VALUE

MATLAB value to be associated with key.

Examples
Set user data with parallel profile settings.

--user-data ParallelProfile c:\\MPS\\myprofile.settings

Use quotes.

--user-data MyValue "Quoted string with escaped \"quotes\" and \\backslash."

8 Configuration Properties— Alphabetical List

8-84

See Also
Introduced in R2016a

 user-data

8-85

